Exercise 2.1 Folding over Trees

Define a datatype for binary trees that store data only at leafs.

```datatype 'a ltree =```

Define a function that returns the list of elements resulting from an in-order traversal of the tree.

```fun inorder :: "'a ltree ⇒ 'a list"```

Have a look at Isabelle/HOL’s standard function `fold`.

```thm fold.simps```

In order to fold over the elements of a tree, we could use `fold f (inorder t) s`. However, from an efficiency point of view, this has a problem. Which?

Define a more efficient function `fold_ltree`, and show that it is correct

```fun fold_ltree :: "('a ⇒ 's ⇒ 's) ⇒ 'a ltree ⇒ 's ⇒ 's"```

```lemma "fold f (inorder t) s = fold_ltree f t s"```

Define a function `mirror` that reverses the order of the leafs, i.e., that satisfies the following specification:

```lemma "inorder (mirror t) = rev (inorder t)"```

Exercise 2.2 Shuffle Product

To shuffle two lists, we repeat the following step until both lists are empty: Take the first element from one of the lists, and append it to the result.

That is, a shuffle of two lists contains exactly the elements of both lists in the right order.

Define a function `shuffles` that returns a list of all shuffles of two given lists

```fun shuffles :: "'a list ⇒ 'a list ⇒ 'a list list"```
Show that the length of any shuffle of two lists is the sum of the length of the original lists.

**Lemma** “\( l \in \text{set} \ (\text{shuffles} \ xs \ ys) \implies \text{length } l = \text{length } xs + \text{length } ys \)”

Note: The \text{set} function converts a list to the set of its elements.

**Exercise 2.3** Fold function

The fold function is a very generic function, that can be used to express multiple other interesting functions over lists.

Write a function to compute the sum of the elements of a list. Specify two versions, one direct recursive specification, and one using fold. Show that both are equal.

**fun** list_sum :: “nat list ⇒ nat”

**definition** list_sum’ :: “nat list ⇒ nat”

**lemma** “list_sum \ l = list_sum’ \ l”

**Homework 2.1** Distinct lists

*Submission until Friday, May 12, 11:59am.* Submit your solution via https://vmnipkow3.in.tum.de. Submit a theory file that runs in Isabelle-2016-1 **without errors**.

Define a function \text{contains}, that checks whether an element is contained in a list. Define the function directly, not using \text{set}.

**fun** contains :: “\(a \Rightarrow \) ‘a list ⇒ bool”

Define a predicate \text{ldistinct} to characterize distinct lists, i.e., lists whose elements are pairwise disjoint. Hint: Use the function contains.

**fun** ldistinct :: “\( ‘a \ list \Rightarrow \) bool”

Show that a reversed list is distinct if and only if the original list is distinct. Hint: You may require multiple auxiliary lemmas.

**lemma** “ldistinct (\text{rev} \ xs) \iff \text{ldistinct} \ xs”

**Homework 2.2** More on fold

*Submission until Friday, May 12, 11:59am.*

Isabelle’s fold function implements a left-fold. Additionally, Isabelle also provides a right-fold \text{foldr}.

Use both functions to specify the length of a list.

**thm** fold.simps
thm foldr.simps

definition length_fold :: "'a list ⇒ nat"
definition length_foldr :: "'a list ⇒ nat"

lemma "length_fold l = length l"
lemma "length_foldr l = length l"

Homework 2.3 List Slices

Submission until Friday, May 12, 11:59am. Specify a function slice xs s l, that, for a
list xs=[x_0,...,x_n] returns the slice starting at s with length l, i.e., [x_s,...,x_{s+l-1}].
If s or len is out of range, return a shorter (or the empty) list.
fun slice :: "'a list ⇒ nat ⇒ nat ⇒ 'a list"
  where

Hint: Use pattern matching instead of if-expressions. For example, instead of writing
f x = (if x>0 then ... else ...) you should define two equations f 0 = ... and f (Suc n) = ....

Some test cases, which should all hold, i.e., yield True
value "slice [0,1,2,3,4,5,6::int] 2 3 = [2,3,4]" — In range
value "slice [0,1,2,3,4,5,6::int] 2 10 = [2,3,4,5,6]" — Length out of range
value "slice [0,1,2,3,4,5,6::int] 10 10 = []" — Start index out of range

Show that concatenation of two adjacent slices can be expressed as a single slice:
lemma "slice xs s l1 @ slice xs (s+l1) l2 = slice xs s (l1+l2)"

Show that a slice of a distinct list is distinct.
lemma "ldistinct xs ⇒ ldistinct (slice xs s l)"