Exercise Sheet 5

• Import Complex_Main instead of Main!
• For this exercise sheet (and homework!), you are not allowed to use sledgehammer!
 Proofs using the smt, metis, meson, or moura methods are forbidden!

Exercise 5.1 Estimating power-of-two by factorial

Prove that, for all natural numbers \(n > 3 \), we have \(2^n < n! \). We have already prepared the proof skeleton for you.

```isar
lemma exp_fact_estimate: "n>3 \implies (2::nat)^n < fact n"
proof (induction n)
case 0 then show ?case by auto
next
case (Suc n)
  assume IH: "3 < n \implies (2::nat) ^ n < fact n"
  assume PREM: "3 < Suc n"
  show "(2::nat) ^ Suc n < fact (Suc n)"

Fill in a proof here. Hint: Start with a case distinction whether \( n > 3 \) or \( n = 3 \).
qed
```

Warning! Make sure that your numerals have the right type, otherwise proofs will not work! To check the type of a numeral, hover the mouse over it with pressed CTRL (Mac: CMD) key. Example:

```isar
lemma "2 ^ n \leq 2 ^ Suc n"
apply auto oops — Leaves the subgoal \( 2 ^ n \leq 2 \cdot 2 ^ n \)
```

You will find out that the numeral 2 has type 'a, for which you do not have any ordering laws. So you have to manually restrict the numeral’s type to, e.g., nat.

```isar
lemma "(2::nat) ^ n \leq 2 ^ Suc n" by simp — Note: Type inference will infer nat for the unannotated numeral, too. Use CTRL+hover to double check!
```
Exercise 5.2 Sum Squared is Sum of Cubes

- Define a function sumto \(f \colon n = \sum_{i=0}^{n} f(i) \).
- Show that \((\sum_{i=0}^{n} i)^2 = \sum_{i=0}^{n} i^3)\).

fun sumto :: "(nat \Rightarrow nat) \Rightarrow nat"

lemma "sumto (λx. x) n ^ 2 = sumto (λx. x ^ 3) n"
proof (induct n)
 case 0 show ?case by simp
next
 case (Suc n)
 assume IH: "(sumto (λx. x) n) ^ 2 = sumto (λx. x ^ 3) n"
 note [simp] = algebra_simps — Extend the simpset only in this block
 show "(sumto (λx. x) (Suc n))^2 = sumto (λx. x ^ 3) (Suc n)"

Insert a proof here
qed

Exercise 5.3 Paths in Graphs

A graph is described by its adjacency matrix, i.e., \(G :: 'a \Rightarrow 'a \Rightarrow bool \).

Define a predicate \(path \ G \ u \ p \ v \) that is true if \(p \) is a path from \(u \) to \(v \), i.e., \(p \) is a list of nodes, not including \(u \), such that the nodes on the path are connected with edges. In other words, \(path \ G \ u \ (p_1 \ldots p_n) \ v \) iff \(G \ u \ p_1 \), \(G \ p_i \ p_{i+1} \), and \(p_n = v \). For the empty path \((n=0) \), we have \(u=v \).

fun path :: "('a ⇒ 'a ⇒ bool) ⇒ 'a ⇒ 'a list ⇒ 'a ⇒ bool"

Test cases

definition "nat_graph x y ←→ y = Suc x"
value ⟨path nat_graph 2 [] 2⟩
value ⟨path nat_graph 2 [3,4,5] 5⟩
value ⟨¬ path nat_graph 3 [3,4,5] 6⟩
value ⟨¬ path nat_graph 2 [3,4,5] 6⟩

Show the following lemma, that decomposes paths. Register it as simp-lemma.

lemma path_append[simp]: "path G u (p1@p2) v ←→ (∃ w. path G u p1 w ∧ path G w p2 v)"

Show that, for a non-distinct path from \(u \) to \(v \), we find a longer non-distinct path from \(u \) to \(v \). Note: This can be seen as a simple pumping-lemma, allowing to pump the length of the path.

Hint: Theorem not_distinct_decomp.

lemma pump_nondistinct_path:
 assumes P: "path G u p v"
 assumes ND: "¬distinct p"
shows "∃ p'. length p' > length p ∧ ¬distinct p' ∧ path G u p' v"

Homework 5 Estimate for Number of Leafs

Submission until Friday, June 2, 11:59am. Recall: Use Isar, proofs using metis, smt, meson, or moura (as generated by sledgehammer) are forbidden!

Define a function to count the number of leafs in a binary tree:

fun num_leafs :: "'a tree ⇒ nat"

Start by showing the following auxiliary lemma:

lemma auxl:
 assumes IHl: "num_leafs l ≤ 2 ^ height l" and IHr: "num_leafs r ≤ 2 ^ height r"
 and lr: "height l ≤ height r"
 shows "num_leafs(Node l x r) ≤ 2 ^ height(Node l x r)"

Also show the symmetric statement. Hint: Copy-paste-adjust!

lemma auxr:
 assumes IHl: "num_leafs l ≤ 2 ^ height l" and IHr: "num_leafs r ≤ 2 ^ height r"
 and rl: "¬ height l ≤ height r"
 shows "num_leafs(Node l x r) ≤ 2 ^ height(Node l x r)"

Finally, show that we can estimate the number of leafs in a tree as follows:

lemma "num_leafs t ≤ 2 ^ height t"
proof (induction t)
 case Leaf show ?case by auto
next
 case (Node l x r)
 assume IHl: "num_leafs l ≤ 2 ^ height l"
 assume IHr: "num_leafs r ≤ 2 ^ height r"
 show "num_leafs ⟨l, x, r⟩ ≤ 2 ^ height ⟨l, x, r⟩"

Fill in your proof here

qed

Homework 5.1 Simple Paths

Submission until Friday, June 2, 11:59am. This homework is worth 5 bonus points.

A simple path is a path without loops, or, in other words, a path where no node occurs twice. (Note that the first node of the path is not included, such that there may be a simple path from u to u.)

Show that for every path, there is a corresponding simple path:
lemma exists_simple_path:
 assumes “path G u p v”
 shows “∃ p’. path G u p’ v ∧ distinct p’”
 using assms
proof (induction p rule: length_induct)
case (1 p)
 assume IH: “∀ pp. length pp < length p → path G u pp v → (∃ p’. path G u p’ v ∧ distinct p’)”
 assume PREM: “path G u p v”
 show “∃ p’. path G u p’ v ∧ distinct p’”

Fill in your proof here.

qed