Exercise 7.1 Round wrt. Binary Search Tree

The distance between two integers x and y is $|x - y|$.

1. Define a function $\text{round} :: \text{int tree} \Rightarrow \text{int} \Rightarrow \text{int option}$, such that $\text{round} t x$ returns an element of a binary search tree t with minimum distance to x, and None if and only if t is empty.

Define your function such that it does no unnecessary recursions into branches of the tree that are known to not contain a minimum distance element.

2. Specify and prove that your function is correct. Note: You are required to phrase the correctness properties yourself!

Hint: Specify 3 properties:
- None is returned only for the empty tree.
- Only elements of the tree are returned.
- The returned element has minimum distance.

3. Estimate the time of your round function to be linear in the height of the tree

```
fun round :: "int tree ⇒ int ⇒ int option"
fun t_round :: "int tree ⇒ int ⇒ nat"
```

Homework 7 Cost for remdups

Submission until Friday, 16. 6. 2017, 11:59am.

The following function removes all duplicates from a list. It uses the auxiliary function member to determine whether an element is contained in a list.

```
fun member :: "'a ⇒ 'a list ⇒ bool" where
    "member x [] ⟷ False"
| "member x (y#ys) ⟷ (if x=y then True else member x ys)"

fun rem_dups :: "'a list ⇒ 'a list" where
    "rem_dups [] = []" |
```
“rem_dups (x ≠ xs) = (if member x xs then rem_dups xs else x ≠ rem_dups xs)”

Show that this function is equal to the HOL standard function remdups

lemma rem_dups_correct: “rem_dups xs = remdups xs”

Define the timing functions for member and rem_dups, as described on the slides:

fun t_member :: “’a ⇒ ’a list ⇒ nat”
fun t_rem_dups :: “’a list ⇒ nat”

Estimate \(t_{\text{rem_dups}} \) to be quadratic in the length of \(xs \). Hint: The estimate \((\text{length} \; xs + 1)^2\) should work.