Presentation of Mini-Projects
You are invited, on a voluntary basis, to give a short presentation of your mini-projects in the tutorial on July 28.
Depending on how many presentations we have, the time slots will be 5 to 10 minutes, plus 2 minutes for questions.
If you are interested, please write me a short email until Thursday, July 27.

Exercise 13.1 Double-Ended Queues
Design a double-ended queue where all operations have constant-time amortized complexity. Prove functional correctness and constant-time amortized complexity.
For your proofs, it is enough to count the number of newly allocated list cells. You may assume that operations $\text{rev } xs$ and $xs @ ys$ allocate $O(|xs|)$ cells.
Explanation: A double-ended queue is like a queue with two further operations: Function enq_front adds an element at the front (whereas enq adds an element at the back). Function deq_back removes an element at the back (whereas deq removes an element at the front). Here is a formal specification where the double ended queue is just a list:

abbreviation (input) \text{enq_list} :: "'$a \Rightarrow 'a \ list \Rightarrow 'a \ list$" where
\text{enq_list } x \ xs \equiv \ xs @ [x]"

abbreviation (input) \text{enq_front_list} :: "'$a \Rightarrow 'a \ list \Rightarrow 'a \ list$" where
\text{enq_front_list } x \ xs \equiv x \# \ xs"

abbreviation (input) \text{deq_list} :: "'$a \ list \Rightarrow 'a \ list$" where
\text{deq_list } xs \equiv \text{tl } xs"

abbreviation (input) \text{deq_back_list} :: "'$a \ list \Rightarrow 'a \ list$" where
\text{deq_back_list } xs \equiv \text{butlast } xs"

Hint: You may want to start with the Queue implementation in Thys/Amortized_Examples.

lemma "list_of init = []"
lemma "list_of(enq \ x \ q) = enq_list \ x \ (list_of \ q)"
lemma "list_of(enq_front \ x \ q) = enq_front_list \ x \ (list_of \ q)"
lemma \textquotedblleft list_of \(q \neq \[] \implies \text{list_of}(\text{deq} \ q) = \text{deq_list}\ (\text{list_of} \ q)\textquotedblright

lemma \textquotedblleft list_of \(q \neq \[] \implies \text{list_of}(\text{deq_back} \ q) = \text{deq_back_list}\ (\text{list_of} \ q)\textquotedblright

**Homework 13 **Pairing Heap

Submission until Friday, 28. 07. 2017, 11:59am.

The datatype of pairing heaps defined in the theory Thys/Pairing_Heap comes with the unstated invariant that *Empty* occurs only at the root. We can avoid this invariant by a slightly different representation:

datatype \(\text{'}a \text{ hp} = \text{Hp} \text{'}a \) \(\text{linorder list}\)\n
type synonym \(\text{'}a \text{ heap} = \text{'}a \text{ hp option}\)

Carry out the development with this new representation. Restrict yourself to the \textit{get_min} and \textit{delete_min} operations. That is, define the following functions (and any auxiliary function required)

\textbf{fun} get_min :: \(\text{'(}a \text{:: linorder) heap} \rightarrow \text{'}a\) \textbf{where}
\textbf{fun} del_min :: \(\text{'(}a \text{:: linorder heap} \rightarrow \text{'}a \text{ heap}\) \textbf{where}
\textbf{fun} php :: \(\text{'(}a \text{:: linorder) hp} \rightarrow \text{bool}\) \textbf{where}
\textbf{fun} mset_hp :: \(\text{'(}a \text{ hp} \rightarrow \text{'}a \text{ multiset}\) \textbf{where}
\textbf{fun} mset_heap :: \(\text{'}a \text{ heap} \rightarrow \text{'}a \text{ multiset}\) \textbf{where}

and prove the following functional correctness theorems and any lemmas required, but excluding preservation of the invariant:

\textbf{theorem} get_min_in: \textit{get_min} (Some \(h \)) \(\in \text{set_hp}(\text{hp})\)
\textbf{lemma} get_min_min: \(\{ \text{_php} \ h; \ x \in \text{set_hp}(\text{hp}) \} \implies \text{get_min} \ (\text{Some} \ h) \leq \text{x}\)
\textbf{lemma} mset_del_min: \textit{mset_heap} (\text{del_min} (\text{Some} \ h)) = \text{mset_hp} \ h - \{\#\text{get_min}(\text{Some} \ h)\}\)

It is recommended to start with the original theory and modify it as much as needed.

Note that function \textit{set_hp} is defined automatically by the definition of type \textit{hp}.