Quantifier elimination with Sturm sequences

The seminar showed that you can use Sturm sequences to transform a formula $\exists X. S(X, T)$ to a system of equations and inequalities only depending on T. Here now an example similar to Exercise 6.4 with a polynomial in x and depending on parameters a and c. We want to eliminate the existential quantifier from the formula $\exists x. x^4 + ax^3 + c$. We start with building the Sturm sequence.

\[
P = P_0 = x^4 + ax^3 + c \\
P_1 = P' = 4x^3 + 3ax^2 \\
P_2 = \text{negative remainder of the division of } P_0 \text{ by } P_1 \\
P_2 = -(P_0 \mod P_1) = \frac{1}{16}(3a^2x^2 - 16c) \triangleq 3a^2x^2 - 16c
\]

We can multiply polynomials in the Sturm sequence with positive real numbers to get nicer looking integer coefficients. This works because it doesn’t change the sign and the divisibility/roots of the polynomial (regarding division in $\mathbb{R}[X]$).

Since we look at the limits at $-\infty$ and ∞ it’s necessary to do a case distinction on the leading coefficients. In our example the leading coefficient of P_2 is depending on a and can become 0:

Case 1: $a = 0$

Then $P_0 = x^4 + c$, $P_1 = 4x^3$ and $P_2 = -16c$. The leading coefficient of P_2 is now c. We need another case distinction.

Case 1.1: $a = 0$, $c = 0$

Then $P_0 = x^4$, $P_1 = 4x^3$ and $P_2 = 0$. By having a look at the sign changes at $-\infty$ and ∞ we see that P has one root. If a polynomial evaluates to zero in the Sturm algorithm, we simply ignore it.

\[
\begin{array}{c|cc}
 & -\infty & \infty \\
P_0 & + & + \\
P_1 & - & + \\
P_2 & 0 & 0 \\
\end{array}
\]

Case 1.2: $a = 0$, $c \neq 0$

Then $P_0 = x^4 + c$, $P_1 = 4x^3$ and $P_2 = -16c$.

\[
\begin{array}{c|cc}
 & -\infty & \infty \\
P_0 & + & + \\
P_1 & - & + \\
P_2 & -\text{sign}(c) & -\text{sign}(c) \\
\end{array}
\quad
\begin{array}{c|cc}
 & -\infty & \infty \\
P_0 & + & + \\
P_1 & - & + \\
P_2 & - & - \\
\end{array}
\quad
\begin{array}{c|cc}
 & -\infty & \infty \\
P_0 & + & + \\
P_1 & - & + \\
P_2 & + & + \\
\end{array}
\]

So P has two roots for $a = 0$ and $c < 0$ and no roots for $a = 0$ and $c > 0$.

Case 2: $a \neq 0$

\[
P_3 = \frac{1}{3a^3}(-64cx - 48ac) \triangleq -64cx - 48ac
\]

Looking at the leading coefficient leads to another case distinction.

Case 2.1: $a \neq 0$, $c = 0$

Then $P_0 = x^4 + ax^3$, $P_1 = 4x^3 + 3ax^2$, $P_2 = 3a^2x^2$ and $P_3 = 0$.

So for \(a \neq 0 \) and \(c = 0 \) \(P \) has two roots. As you can easily see those are 0 and \(-a\) since \(x^4 + ax^3 = x^3(x + a) \).

Case 2.2: \(a \neq 0, c \neq 0 \)

\[
P_4 = \frac{1}{256}(-27a^4 + 256c) \leq -27a^4 + 256c
\]

Hey, how about a case distinction?

Case 2.2.1: \(a \neq 0, c \neq 0, P_4 = 0 \)

Then \(P_0 = x^4 + ax^3 + c, P_1 = 4x^3 + 3ax^2, P_2 = 3a^2x^2 - 16c, P_3 = -64cx - 48ac \) and \(P_4 = 0 \).

\[
\begin{array}{c|cc}
\text{ } & -\infty & \infty \\
P_0 & + & + \\
P_1 & - & + \\
P_2 & + & + \\
P_3 & \text{sign}(c) & -\text{sign}(c) \\
P_4 & 0 & 0 \\
\end{array}
\]

So \(P \) has one real roots if \(c > 0 \) and three roots if \(c < 0 \). But the case \(c < 0 \) is in contradiction to \(-27a^4 + 256c = 0 \iff c = \frac{27}{256}a^4\). We can ignore this case.

Case 2.2.2: \(a \neq 0, c \neq 0, P_4 \neq 0 \)

Then \(P_0 = x^4 + ax^3 + c, P_1 = 4x^3 + 3ax^2, P_2 = 3a^2x^2 - 16c, P_3 = -64cx - 48ac \) and \(P_4 = -27a^4 + 256c \).

\[
\begin{array}{c|cc}
\text{ } & -\infty & \infty \\
P_0 & + & + \\
P_1 & - & + \\
P_2 & + & + \\
P_3 & \text{sign}(P_4) & \text{sign}(P_4) \\
P_4 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cc|cc|cc|cc}
\text{ } & \text{ } & \text{ } & c > 0 & P_4 > 0 & c > 0 & P_4 < 0 & c < 0 & P_4 > 0 & c < 0 & P_4 < 0 \\
\text{ } & \text{ } & \text{ } & -\infty & \infty & -\infty & \infty & -\infty & \infty & -\infty & \infty \\
P_0 & + & + & P_0 & + & + & P_0 & + & + & P_0 & + & + \\
P_1 & - & + & P_1 & - & + & P_1 & - & + & P_1 & - & + \\
P_2 & + & + & P_2 & - & - & P_2 & + & + & P_2 & + & + \\
P_4 & + & + & P_4 & + & + & P_4 & + & + & P_4 & + & + \\
\text{ } & \text{ } & \text{ } & 0 \text{ roots} & 2 \text{ roots} & 4 \text{ roots} & 2 \text{ roots} & \text{ } & \text{ } & \text{ } & \text{ } \\
\end{array}
\]

The third case \(c < 0 \) and \(P_4 > 0 \) is a contradiction and can be ignored in the final formula.

Conclusion

By gathering all cases where \(P \) has roots, we can now eliminate the existential quantifier. We can also negate the cases where \(P \) has no roots to get an also equivalent formula.
\[\exists x. x^4 + a \cdot x^3 + c = 0 \]
\[\iff \]
\[(a = 0 \land c = 0) \lor (a = 0 \land c < 0) \lor (a \neq 0 \land c > 0 \land -27a^4 + 256c = 0) \lor (a \neq 0 \land c > 0 \land -27a^4 + 256c < 0) \lor (a \neq 0 \land c < 0 \land -27a^4 + 256c < 0) \]
\[\iff \neg((a = 0 \land c > 0) \land (a \neq 0 \land c > 0 \land -27a^4 + 256c > 0)) \]

The above formula could of course be further simplified.

What to take from all of this:

- You can multiply all polynomials in the Sturm sequence with positive real numbers without changing the result of the algorithm (even \(P_0 \)).
- You have to make a case distinction if the leading coefficient of a Sturm polynomial contains a parameter.
- Avoid doing long division on complex polynomials by hand. It’s cumbersome and error prone.