Real Arithmetic

Max Haslbeck

Fakultät für Informatik
TU München

08 July 2016
Real Arithmetic

Is the theory $Th(\mathbb{R}, +, *, =, <)$ decidable?

Informally: Can we decide if a closed first order formula F in \mathbb{R} using $+, *, =$ and $<$ is true?

$$\exists xyz \forall abc$$

$$(12x^5y^4a^4 - 322x^4 + 78x^3y^2 - 1034 = 0) \land (2y^4 - 43z^2b^4 = 0) \land (38z^3y^2 - 322zc^{19} > 0) \land (123z^8 - 43x^3 + y^2 < 0)$$
Sturm Sequences [Charles Sturm, 1803–1855]

Method to count number of real roots of a polynomial $P \in \mathbb{R}[X]$ in an interval
Sturm Sequences [Charles Sturm, 1803–1855]

Method to count number of real roots of a polynomial $P \in \mathbb{R}[X]$ in an interval

Build a sequence of polynomials with:

- $P_0 = P$
- $P_1 = P'$
- $P_{i+1} = -(P_{i-1} \mod P_i)$
Sturm Sequences [Charles Sturm, 1803–1855]

Method to count number of real roots of a polynomial \(P \in \mathbb{R}[X] \) in an interval

Build a sequence of polynomials with:

\[
\begin{align*}
P_0 &= P \\
P_1 &= P' \\
P_{i+1} &= -(P_{i-1} \mod P_i)
\end{align*}
\]

Let \(v_P(a) \) be the number of sign changes in the sequence \(P_0(a), P_1(a), \ldots, P_K(a) \)
Sturm Sequences Lemma

Let $a < b$ be real numbers which are not roots of P.
Sturm Sequences Lemma

Let $a < b$ be real numbers which are not roots of P.

The difference $\nu_P(a) - \nu_P(b)$ is equal to the number of distinct roots of P in the interval (a, b).
Sturm Sequences Lemma

Let $a < b$ be real numbers which are not roots of P.

The difference $v_P(a) - v_P(b)$ is equal to the number of distinct roots of P in the interval (a, b).

The difference $v_P(-\infty) - v_P(\infty)$ is equal to the number of distinct roots of P.
Example

$P_0 = x^3 - 3x + 1$
Proof sketch

Assume P has no multiple roots:

- If c is a root of P:

<table>
<thead>
<tr>
<th>x</th>
<th>$c - \epsilon$</th>
<th>c</th>
<th>$c + \epsilon$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_0</td>
<td>-</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>P_1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

or

<table>
<thead>
<tr>
<th>x</th>
<th>$c - \epsilon$</th>
<th>c</th>
<th>$c + \epsilon$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_0</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>P_1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Proof sketch

Assume P has no multiple roots:

- If c is a root of P:

 \[
 \begin{array}{c|ccc}
 x & c - \epsilon & c & c + \epsilon \\
 \hline
 P_0 & - & 0 & + \\
 P_1 & + & + & +
 \end{array}
 \]

 or

 \[
 \begin{array}{c|ccc}
 x & c - \epsilon & c & c + \epsilon \\
 \hline
 P_0 & + & 0 & - \\
 P_1 & - & - & -
 \end{array}
 \]

- For \((1 < i < K)\) if c is a root of \(P_i\) and since
\[P_{i-1} = P_iQ - P_{i+1},\]
then \(P_{i+1}(c) = -P_{i-1}(c) \neq 0.\)
Proof sketch

Assume P has no multiple roots:

- If c is a root of P:

<table>
<thead>
<tr>
<th>x</th>
<th>$c - \epsilon$</th>
<th>c</th>
<th>$c + \epsilon$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_0</td>
<td>-</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>P_1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

or

<table>
<thead>
<tr>
<th>x</th>
<th>$c - \epsilon$</th>
<th>c</th>
<th>$c + \epsilon$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_0</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>P_1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- For $(1 < i < K)$ if c is a root of P_i and since $P_{i-1} = P_i Q - P_{i+1}$, then $P_{i+1}(c) = -P_{i-1}(c) \neq 0$.

Sturm sequences also work for P with multiple roots.
Multiple Equations

\[P_1 = 0, \ldots P_n = 0 \iff P_1^2 + \ldots + P_n^2 = 0 \]
One Equation + One Inequality

Let Q be polynomial in $\mathbb{R}[X]$ and we want to count the number of real roots c of P such that $Q(c) > 0$.
One Equation + One Inequality

Let \(Q \) be polynomial in \(\mathbb{R}[X] \) and we want to count the number of real roots \(c \) of \(P \) such that \(Q(c) > 0 \)

Build a sequence of polynomials with:

- \(P_0 = P \)
- \(P_1 = P' Q \)
- \(P_{i+1} = -(P_{i-1} \mod P_i) \)

Let \(v(a) \) be the number of sign changes in the sequence \(P_0(a), P_1(a), \ldots, P_K(a) \)
Lemma

Let $a < b$ be real numbers which are not roots of P. The difference $\nu(a) - \nu(b)$ is equal to the number of distinct roots of P in the interval (a, b) such that $Q(c) > 0$ minus the number such that $Q(c) < 0$.
One Equation + Multiple Inequalities

- \(P = 0, Q_1 > 0, \ldots, Q_k > 0 \)
 \((P\ is\ relatively\ prime\ with\ all\ Q_i)\)
- \(\epsilon = (\epsilon_1, \ldots, \epsilon_k) \in \{0, 1\}^k \)
- \(\varphi = (\varphi_1, \ldots, \varphi_k) \in \{0, 1\}^k \)
- \(Q_\epsilon = Q_{\epsilon_1}^{\epsilon_1} \cdots Q_{\epsilon_k}^{\epsilon_k} \)
- \(s_\epsilon = \nu_{P, Q_\epsilon}(-\infty) - \nu_{P, Q_\epsilon}(\infty) \)
- \(c_\varphi = \# \) of distinct real roots \(c \) of \(P \) such that the sign of \(Q_i(c) \) is \((-1)^{\varphi_i}\)

- Let \(s \) (resp. \(c \)) be the vector whose coordinates are all \(s_\epsilon \) (resp. \(c_\varphi \))

Lemma
There is an invertible \(2^k \times 2^k \) matrix \(A_k \), depending only on \(k \), such that \(s = A_{\ell} \cdot c \).
Multiple inequalities

\[Q_1 > 0, \ldots, Q_n > 0 \]

- The system is satisfied on an unbounded interval iff the leading coefficients of \(Q_1, \ldots, Q_n \) or \(Q_1(-X), \ldots, Q_n(-X) \) are all positive.

- Let \(Q = \prod_{i=1}^{n} Q_i \). The system is satisfied iff the system \(Q' = 0, Q_1 > 0, \ldots, Q_n > 0 \) has a real solution.
Example

\(f(x) = -x^2 + 1 \)

\(g(x) = x^3 - 3x + 1 \)

\((g*f)(x) \)

\((g*f)'(x) \)
Quantifier elimination
[A. Tarski 1951, A. Seidenberg 1952]

Let $S(T, X)$ be system of polynomial equations/inequalities in the variables $T = (T_1, \ldots, T_n)$ and X.

There exists a disjunction C of polynomial equations/equalities $C_1(T) \lor \ldots \lor C_n(T)$ which is equivalent to $\exists X \ S(T, X)$. C is computable.
Tarski’s algorithm has NONELEMENTARY complexity
(excision time not bound by a tower of 2^{2^n})
Cylindrical algebraic decomposition (George Collins, 1975)
Worst case runtime is doubly exponential
Thank you.
Michel Coste.
An introduction to semialgebraic geometry.