Goals You get a deeper knowledge of Burstall’s memory model.

Exercise 1 [4] Heap Basics

1. What is the meaning of \(p \), \(q \), and \(xs \) in the abstraction predicate \(\text{list node-alloc node-next } p \; xs \; q \) for lists?
2. What is the purpose of the parameters \(\text{node-alloc} \) and \(\text{node-next} \)?
3. For every abstraction predicate, we need a separation lemma. What is its purpose? (Look at examples and then give a general explanation)
4. Why can Burstall’s memory model not be used for arbitrary C programs? Give an example for a program, which is not correctly modeled.

Exercise 2 [6] Sum of List Elements

(a) [5] The following code iterates through a list at \(p \) and computes the sum of all elements

```c
s = 0;
while (p != null) {
    s = s + p->data;
    p = p->next;
}
```

The precondition requires that the list is allocated and binds the auxiliary variable \(P \).
\[
\text{list node-alloc node-next } p \; XS \; \text{NULL} \; \land \; p = P
\]

The postcondition ensures that the result \(s \) is really the sum of the data fields of the list elements.
\[
s = \text{listsum (list-data node-data } XS) \]

The invariant is similar to \(\text{list_length} \) from the lecture, but we need to consider the part of the list we already visited, too.
\[
\exists \; \text{ys zs}.
\quad \begin{align*}
 \text{list node-alloc node-next } P \; \text{ys } p \; \land \\
 \text{list node-alloc node-next } p \; \text{zs } \text{NULL } \land \\
 XS = \text{ys } @ \; \text{zs } \land \\
 s = \text{listsum (list-data node-data } \text{ys})
\end{align*}
\]

Your task is to do a detailed proof to understand which lemmas are required at which point.

(b) [1] Try to find a proof which is as automatic as possible. For this, extend the current simpset step-by-step by using

\begin{verbatim}
declare · · · [simp]
\end{verbatim}

instead of passing the theorems to every simp call.