Interactive Software Verification

Spring Term 2013

Holger Gast
gasth@in.tum.de

30.4.2013
Isabelle So Far

- Basic use

- Definitions create new . . . (possibly not all)
 - New types
 - New constants
 - New theorems about constants

- Basic proof techniques

- Introduction to recursion and induction
Recap: Proofs in Isabelle

- Goals: \([knowledge] \rightarrow to\ be\ derived\)

- Simplifier simp
 - Proofs by term rewriting with equalities
 - Matching: replaces unknowns in rules by terms
 - Example use: compute result of defined HOL functions

- Elementary proof steps
 - rule: introduction rules \([?P; ?Q] \rightarrow ?P \land ?Q\)
 - drule/frule: Vorwärts-Schlüsse \(?P \land ?Q \rightarrow ?P\)

- Automatic proof search
 - auto: elementary steps + simp (using heuristics)
 - force, fastforce: like auto, but fails if does not solve
 - fast, blast: \(\approx\) only elementary steps, no simp
Example: In-order Traversal of Trees

fun in-order :: "bt ⇒ int list"
where
 "in-order Leaf = []"
| "in-order (Node l v r) = in-order l @ [v] @ in-order r"

• Rewrite rules f.simps

in-order Leaf = []
in-order (Node ?l ?v ?r) = in-order ?l @ [?v] @ in-order ?r

• Induction (over call depth) f.induct
 [] P Leaf; ∀ l v r. [P l; P r] ⇒ P (Node l v r) [] P ?a

Note: analogous to bt.induct only by accident (because function is structural recursion)

• Using the induction rule

 apply (induct args rule: regel)

 ⇒ Replaces ?a (by args) and then ?P
Example: Induction over the Call Depth

Lemma length-of-in-order-by-fun-induct:

"int (length (in-order t)) = ninner t"

apply (induct rule: in-order.induct)

Yields proof obligations

proof (prove): step 1

goal (2 subgoals):

1. `int (length (in-order Leaf)) = ninner Leaf`
2. `∀l v r. [int (length (in-order l)) = ninner l; int (length (in-order r)) = ninner r]`\(⇒\) `int (length (in-order (Node l v r))) = ninner (Node l v r)`

Idea: prove an assertion about behaviour of `in_order`

apply (simp-all only: in-order.simps)

2. `∀l v r. [int (length (in-order l)) = ninner l; int (length (in-order r)) = ninner r]`\(⇒\) `int (length (in-order (l @ [v] @ in-order r))) = ninner (Node l v r)`
Today: Further Basics & Applications

- Basics
 - Types: polymorphism and type classes
- Functions
 - Tail recursion & loops
 - Termination proofs
- Induction
 - Induction over the call depth
 - Tail recursion & (loop-like) invariants
 - Nested induction
- Examples in Demo03.thy
- Overall goal: prepare for reasoning about language semantics
Basics: Polymorphism and Type Classes

- Theories are often independent of the type of data
 - Equalities in rings: $\mathbb{Z}, \mathbb{R}, \ldots$
 - Basis: axioms of rings
 - Then show for special cases that axioms are fulfilled
 \Rightarrow Theorems are specialized automatically

- Idea: polymorphism
 - Allow type variables α, β, \ldots
 - Isabelle syntax: ’a, ’b, \ldots as types
 - As for terms: free type variables and type unknowns
 \Rightarrow Isabelle replaces type variables as necessary
 (Hindley/Milner type inference, similar to ML, Haskell, \ldots)
 \Rightarrow Terms (definitions, theorems, \ldots) have many types
Basics: Polymorphism and Type Classes

• Idea: type classes (also: sorts)
 • Type classes restrict replacements for type variables
 • Isabelle syntax: ’a :: linorder
 As in type restrictions i :: int
 Can be combined: x :: ’a :: linorder
 • Type classes can introduce syntax for operators, ...
 • They can give axioms that types must obey

⇒ Instances of type classes

• Show sorts: declare [[show_sorts]] at theory level,
 using [[show_sorts]] in proofs
• In jEdit: hover over type variable
Example: Orders

- **Class ord**
 - Notation \(\leq, < \)
 - No axioms about behaviour / meaning of these

- **Class preorder**
 - `less_le_not_le`: \(x < y \iff x \leq y \land \neg (y \leq x) \)
 - `order_refl`: \(x \leq x \)
 - `order_trans`: \(x \leq y \implies y \leq z \implies x \leq z \)

- **Class linorder (linear / total orders)**
 - `linear`: \(x \leq y \lor y \leq x \)
Example: Orders

- If a type is an instance of an order class
 - We have basic theorems about orders (Orderings.thy)
 - Automatic provers about orders (transitivity!) kick in

⇒ Enables re-use of theories & automated provers

⇒ Worth considering for one’s own types

- Example: word for machine-level words / bit representations
Polymorphism

fun bt-sum :: "bt ⇒ int"
where "bt-sum Leaf = 0"
| "bt-sum (Node l u r) = bt-sum l + u + bt-sum r"

Same for: in-order, nleafs, ninner, . . . — there must be a better way

fun bt-fold :: "'a ⇒ ('a ⇒ int ⇒ 'a ⇒ 'a) ⇒ bt ⇒ 'a"
where "bt-fold u f Leaf = u"
| "bt-fold u f (Node l x r) = f (bt-fold u f l) x (bt-fold u f r)"

lemma bt-sum-by-bt-fold:
"bt-sum t = bt-fold 0 (λa b c. a + b + c) t"
by (induct t) auto

definition
"bt-forall P t ≡ bt-fold True (λa b c. a ∧ P b ∧ c) t"

lemma bt-forall-result:
"bt-forall P t = (∀x ∈ bt-elems t. P x)"
apply (induct t)
apply (unfold bt-forall-def)
apply auto
done
Induction on Call Depth

- Example: `merge` (note: “sequential” implied)

```
fun merge :: "'a :: linorder) list ⇒ 'a list ⇒ 'a list"
where
  "merge [] ys = ys"
| "merge xs [] = xs"
| "merge (x # xs) (y # ys) = 
    (if x ≤ y
        then x # merge xs (y # ys)
        else y # merge (x # xs) ys)"
```

- Merge is correct

```
lemma merge-sorted:
  "[ sorted xs; sorted ys ] ⇒ sorted (merge xs ys)"
```
Direct Attempts – Rather Inelegant

- Problem with `induct xs`: cases reduce one argument each

 apply (induct xs)
 apply (auto simp add: sorted-Cons)
 txt {* Problem: second argument is not decreased *}

⇒ Induction hypothesis does not apply in one of the cases

- We must perform induction to make arguments “smaller”

 apply (induct ”length xs + length ys” arbitrary: xs ys)
 apply (case-tac xs)
 apply (case-tac ys)
 apply (auto simp add: sorted-Cons set-of-merge)
 ...
 more cases and auto...
 done
Correctness proof of merge

apply (induct xs ys rule: merge.induct)
apply (simp-all add: sorted-Cons)
apply (auto simp add: set-of-merge)
done

- Merge works with both arguments symmetrically
 ⇒ Not defined along the structure of one list
 ⇒ Cannot argue by induction on list structure
- Approach: we wish to prove a statement about the result
 ⇒ Induction on the computation leading to the result
- Later: extension to inductively defined relations
 ⇒ Will be central in talking about semantics of languages
Tail recursion

- Recursion uses space on the stack
 ⇒ Overflows on large/deep data structures
- Tail recursion
 - Recursive call only as “final step”
 ⇒ Compiler can optimize into loop
- Example of naive recursion
  ```
  fun addup :: "int list ⇒ int"
  where
  "addup [] = 0"
  | "addup (x # xs) = x + addup xs"
  ```
- Execute + after recursion
 ⇒ Must use a stack
 ⇒ Re-write to use tail recursion
Compare: Imperative Solution

- Direct relation to usual practice
 - Tail recursion = loop
 - Accumulator = auxiliary local variable
 - Induction hypothesis \(\approx\) loop invariant

- Example `sumup`

```java
public static int sumup(int a[]) {
    int res = 0;
    for (int i = 0; i != a.length; i++) {
        // Invariante: res = \(\sum_{j=0}^{i-1} a[i]\)
        // Äquiv.: \(\sum_{j=0}^{n-1} a[i]\)
        //           = res + \(\sum_{j=i}^{n-1} a[i]\)
        res = res + a[i];
    }
    return res;
}
```
Example of Tail Recursion

- Tail-recursive variant of summation

 \[
 \text{fun} \ addup-tr :: \text{"int} \Rightarrow \text{int list} \Rightarrow \text{int}"

 \text{where} \quad \text{"addup-tr accu [] = accu"}

 | \quad \text{"addup-tr accu (x \# xs) = addup-tr (x + accu) xs"}
 \]

- Keep partial sums in accumulator
- Recursive call is final step
 \Rightarrow Stack space for current call can be discarded

- Is this variant “correct”? \(\Rightarrow\) Have to prove

 \text{lemma addup-correct:}

 "addup-tr 0 xs = addup xs"

 \text{apply (induct xs)}

- Typical: induction hypothesis too weak \(\Rightarrow\) goal unsolvable

 addup-tr 0 xs = addup xs \(\Rightarrow\) addup-tr x xs = x + addup xs
Solution: Generalize over Accumulator

- Statement must take into account arbitrary accumulators

 Lemma addup-correct-aux:

 "∀ accu. addup-tr accu xs = addup xs + accu"

 by (induct xs) auto

- accu appears in the result / right-hand-side

- Is forall quantified ⇔ quantified in IH

- Conclusion

 Lemma addup-correct:

 "addup-tr 0 xs = addup xs"

 by (simp add: addup-correct-aux)

- Method **induct** supports this common case

 Lemma addup-correct-aux’:

 "addup-tr accu xs = addup xs + accu"

 by (induct xs arbitrary: accu) auto
Generalization to Trees

- Sum of values in the tree

 definition
 "\texttt{btsum bt} \equiv \texttt{listsum (in-order bt)}"

- Recursive solution straightforward \(\approx\) in-order

- Tail recursion: explicit stack (next slide)

- Relation to previous ideas
 - Accu = Stack + partial sum
 - Function call \(\approx\) execution of loop body
 \(\Rightarrow\) \(\approx\) state transitions in language semantics
public static int compute(TreeNode t) {
 int res = 0;
 Stack<TreeNode> stack = new Stack<TreeNode>();
 stack.push(t);
 while (!stack.isEmpty()) {
 TreeNode x = stack.pop();
 if (x instanceof Node) {
 Node n = (Node) x;
 res += n.val;
 stack.push(n.right);
 stack.push(n.left);
 }
 }
 return res;
}
Tail-recursive Sum over Trees

function btsum-tr :: "(bt list × int) ⇒ (bt list × int)"
where
 "btsum-tr ([], res) = ([], res)"
| "btsum-tr (Leaf # stack, res) = btsum-tr (stack, res)"
| "btsum-tr (Node l v r # stack, res) = btsum-tr (l # r # stack, v + res)"
by pat-completeness auto

- Use list as stack
- State = (stack, res)
- Mirrors loop of previous slide
- Correctness

lemma btsum-tr-correct:
 "snd (btsum-tr ([t],0)) = btsum t"

- First task: prove termination of the function
Termination Proof

- HOL functions must terminate (otherwise: inconsistencies)
- How to the steps of the function help?

 \[
 \text{btsum-tr (Leaf \# stack, res) = btsum-tr (stack, res)}
 \]

 \[
 \text{btsum-tr (Node l v r \# stack, res) = btsum-tr (l \# r \# stack, v + res)}
 \]
- Idea: after step less work remains
 - Stack is “list of tasks”
 - Leaf\$s are no tasks at all
 - Node\$s are processed, their children remain
- Technical argument
 - Give well-founded order such that
 - The function arguments are smaller in recursive call
Idea Termination Proof

"\texttt{btsum-tr (Node l v r \# stack, res) = btsum-tr (l \# r \# stack, v + res)}"

"Schritt"

\[
\begin{array}{c}
\text{A} \\
\text{B}
\end{array} \quad \begin{array}{c}
\text{C} \\
\text{D}
\end{array}
\]

\[
\begin{array}{c}
\text{A} \\
\text{B} \\
\text{C} \\
\text{D}
\end{array}
\]
Proof of Termination

• Idea: count the “number of tasks” (could also use built-in size function)

```plaintext
fun node-size :: "bt ⇒ nat"
where "node-size Leaf = 1"
| "node-size (Node l - r) = 1 + node-size l + node-size r"
definition "stack-size stack ≡ listsum (map node-size stack)"
```

• For a function 'a → nat order {(x, y). fx < fy} is well-founded

```
wf (measure f)   (wf-measure)
```

• Use this with the relation proof method

```plaintext
termination btsum-tr
apply (relation "measure (λ(stack,-). stack-size stack)"
apply (auto simp add: stack-size-def)
done
```
Aside: Multiset Orders

- Insight: the recursion step either
 - Removes a tree
 - Or removes a tree and replaces it with two smaller trees

⇒ New argument is “less” in the multiset order \([1, \S21]\)

- Multiset orders over a well-founded order are well-founded

⇒ Prove termination by comparing by that order!

\begin{align*}
\text{apply} & \ (\text{relation}”\ inv\text{-image} (\text{mult} (\text{measure} \text{size})) \ (\text{multiset-of} \circ \text{fst})”) \\
\text{apply} & \ (\text{auto intro!: wf-mult})
\end{align*}

- Look only at first argument of function (i.e. the tree)
- Take the multiset of
- Compare multisets in recursion call be multiset order
Now: Correctness of \(\text{btsum-tr} \)

- Need to prove \(\text{snd} \left(\text{btsum-tr} ([t], 0) \right) = \text{btsum} t \)
- Again: generalize over "current state"
 - Relation between partial result and final result
 - Analogous to loop invariant in iterative solution

\[\Rightarrow \text{snd} \left(\text{btsum-tr} (\text{stack}, \text{res}) \right) = \text{res} + \text{listsum} \left(\text{map} \, \text{btsum} \, \text{stack} \right) \]

- Idea: induction over call depth (again)

 apply (induct "(stack, res)" arbitrary: stack res rule: btsum-tr.induct)

- Induction step changes the state \(\Rightarrow \) on \((\text{stack}, \text{res}) \)
- Its contents is "arbitrary"

- Tip: look at goals without arbitrary, just to know what such unsolvable goals look like.
Nested Induction

- Common scenario
 - Function on several inductively-defined arguments
 - Induction only on one of them (or call depth)
 - Result: IH & proof require induction over other argument

- Example: addition on natural numbers (Z=zero, S=succeessor)

 datatype \(\mathcal{N} = Z | S \mathcal{N} \)
 fun addN :: "\mathcal{N} ⇒ \mathcal{N} ⇒ \mathcal{N}" (infixl "⊕" 65)
 where
 "addN Z b = b"
 | "addN (S a) b = S (addN a b)"

- We seek to prove commutativity

 lemma add-comm:
 "a ⊕ b = b ⊕ a"
Nested Induction

- Direct induct a yields goals

 goal (2 subgoals):
 1. \(b = b \oplus Z \)
 2. \(\land a. a \oplus b = b \oplus a \implies S (b \oplus a) = b \oplus S a \)

\[\implies \text{Must prove for arbitrary } b \]

\[\implies \text{Prove these as auxiliary lemmata by induction, too} \]

lemma add-comm-Z:

”\(b = b \oplus Z \)”

by (induct b) auto

lemma add-comm-S:

”\(b \oplus S c = S (b \oplus c) \)”

by (induct b) auto

lemma add-comm:

”\(a \oplus b = b \oplus a \)”

by (induct a) (auto simp add: add-comm-Z add-comm-S)
Standard Constructions

- Motivation: OO patterns
 - Get a solution quicker
 - Use established solutions
 - Get known nice properties for free
- The same exists for functional programming
 - Standard solutions for common problems
 - Get pre-defined functions and constants
 - Access readily available theorems
- Examples
 - Option (encode success / failure)
 - Maps (partial functions, valuations for variables)
 - Lists (map, fold, filter, . . .)
Type option

- Common phenomenon: partial functions
 - Lookup of value of undefined variable
 - Non-terminating function
 - Illegal function arguments
 - Like exceptions in programming languages
- Solution: result of type option
- Example: search for an element with given properties

```haskell
fun get-first :: 
  ('a ⇒ bool) ⇒ 'a list ⇒ 'a option
where
  get-first - [] = None
| get-first P (x # xs) =
  (if P x then Some x else get-first P xs)
lemma get-finds-existing:
  (∃ x ∈ set xs. P x) ⇒ get-first P xs ≠ None
by (induct xs) auto
```
Abbreviation: ’a → ’b is really only ’a ⇒ ’b option

Introduces notation for concrete maps & their updates

\[
\begin{align*}
\text{dom} & \left[\text{"x"} \mapsto 1, \text{"y"} \mapsto 2 \right] = \{ \text{"x"}, \text{"y"} \} \\
\text{ran} & \left[\text{"x"} \mapsto 1, \text{"y"} \mapsto 2 \right] = \{ 1, 2 \}
\end{align*}
\]

Example

```
types vals = "string → int"

datatype exp =
  Var string
  | Const int
  | Plus exp exp
```
fun eval :: "vals ⇒ exp ⇒ int option"
where "eval v (Var x) = v x"
| "eval v (Const n) = Some n"
| "eval v (Plus a b) =
 (case eval v a of
 None ⇒ None
 | Some x ⇒
 (case eval v b of
 None ⇒ None
 | Some y ⇒ Some (x+y))))"

fun exp-vars :: "exp ⇒ string set"
where "exp-vars (Var x) = {x}"
| "exp-vars (Const -) = {}"
| "exp-vars (Plus a b) = exp-vars a ∪ exp-vars b"
Type of Lists

- Structure: well-known with \texttt{hd}, \texttt{tl}, \ldots
- Standard operations
 - \texttt{map}: lift operation to list argument-wise
 - \texttt{fold}: primitive / structural recursion over list
- Special case: \texttt{foldl} is lifting of state transitions
 - Type $(\texttt{a} \Rightarrow \texttt{b} \Rightarrow \texttt{a}) \Rightarrow \texttt{a} \Rightarrow \texttt{b} \text{ list} \Rightarrow \texttt{a}$
 - State is \texttt{a}
 - Transition $(\texttt{a} \Rightarrow \texttt{b} \Rightarrow \texttt{a})$
Example: Execution of Instructions

```haskell
datatype instr = Init int | Add int | Mul int

fun exec-instr :: "state ⇒ instr ⇒ state"
where "exec-instr (Init i) = i"
| "exec-instr s (Add i) = s + i"
| "exec-instr s (Mul i) = s * i"

types block = "instr list"

definition "exec-block state b ≡ foldl exec-instr state b"

lemma "exec-block 0 [Init 1, Add 2, Mul 5] = 15"
by (simp add: exec-block-def)
```
Today

- Additional material on functions
 - Termination proofs
 - Induction over the call depth
 - Generalization of inductive statements
- Tail recursion
 - Relation to imperative programming
 - Techniques for inductive correctness proofs
- Standard constructions in Isabelle
 - Partial functions: option & map
 - States and transitions fold
References