Interactive Software Verification

Spring Term 2013

Holger Gast
gasth@in.tum.de

25.6.2013
Today

- Manipulating lists on the heap
- Ghost variables as a specification tool
Recap
Correctness with Abstractions

Proof in application domain

Abstraction + Separation Lemmas

Proofs about state

Execution

W → W'

P → Q

S → S'

Abstraction

Description

Interactive Software Verification, 25.6.2013
The Problem of Aliasing

\(p \rightarrow x \nabla y \quad \text{\&} \quad q \rightarrow x \nabla y \)

Proof obligation: exclude aliasing

\[
\{ r0 = q \rightarrow \text{point-y} \land \text{point-alloc } p \land p \neq q \} p \rightarrow y = 0 ; \{ r0 = q \rightarrow \text{point-y} \}
\]

\[
\text{field-get point-y } q = \text{field-get (field-upd point-y } p \ 0 \} q
\]
Separation Lemmas & Split

\[k \not\in \{i..<j\} \implies \text{elems} (\text{aset} \ k \ y \ a) \ ij = \text{elems} \ a \ ij \]

\[\checkmark \text{Lift (non-)aliasing proofs to abstractions} \]
Burstall’s Heap Model

\[\text{data} \]

\[\text{next} \]
Using Burstall’s heap model

\textbf{inductive} list :: ” alloc \Rightarrow \text{nxt} \Rightarrow \text{addr} \Rightarrow \text{addr list} \Rightarrow \text{addr} \Rightarrow \text{bool}”

\textbf{where}

emptyI: ” [p = q; xs = []] \Rightarrow \text{list alloc \text{nxt} p \times s q”}

| consI: ” [alloc p; p \neq \text{NULL}; \text{list alloc \text{nxt} (p \rightarrow \text{nxt}) \times s’ q} |

\text{\[\Rightarrow \text{list alloc \text{nxt} p (p \neq \times s’) q”} \] \Rightarrow \text{list alloc \text{nxt} p (p \neq \times s’) q”} \}
Example: Counting the List Nodes

```ocaml
define-struct {*
  struct node { int data; struct node *next; }
  *}

pre: "list node-alloc node-next p XS NULL"
post: "nat n = length XS"
     n = 0;
    /*@  ∃ ys. list node-alloc node-next p ys NULL ∧
        length XS = nat n + length ys ∧ 0 ≤ n  */
    while (p != null) {
      n = n + 1;
      p = p->next;
    }
```
Example: Sum over List Data

pre:
list node-alloc node-next p XS NULL ∧ p = P

post:
s = listsum (list-data node-data XS)

s = 0;
/*@ ∃xs ys. list node-alloc node-next P xs p ∧
list node-alloc node-next p ys NULL ∧
XS = xs @ ys ∧
s = listsum (list-data node-data xs) */

while (p != null) {
 s = s + p->data;
p = p->next;
}

Manipulating Lists
Side-effects and Separation Lemmas

- Problem: side-effects may destroy list structure

- Insight: result of list depends only of nodes in fragment

 \[\text{lemma list-sep[simp]:} \]
 \[r \notin \text{set } xs \implies \text{list alloc (field-upd } \text{nxt } r \text{) } p \times s q = \text{list alloc } \text{nxt } p \times s q \]

 \[\Rightarrow \text{ Reduced aliasing problem to proving set properties} \]

 \[\Rightarrow \text{ Isabelle's provers solve such proof obligations} \]
Example: List Reversal

```c
q = NULL;
while (p \neq NULL) {
    t = p->nxt;
    p->nxt = q;
    q = p;
    p = t;
}
```
Invariant of List Reversal

\[\exists ys \ zs. \ \text{list alloc n}xt \ p \ zs \ \text{NULL} \land \ \text{list alloc n}xt \ q \ ys \ \text{NULL} \land \\
XS = \text{rev} \ ys @ zs \land \ \text{set} \ zs \cap \ \text{set} \ ys = \{\} \land \text{distinct} \ zs \]

- Initial list is \(XS \)
- During loop: two lists starting at \(p \) and \(q \)
- Invariant strategy "partial result": \(XS \) has already been partially reversed
- State disjointness to exclude alias
- Holds initially, since \(q=\text{NULL} \), i.e. \(ys=[] \)
Preserving the Invariant

\[\exists \ ys \ zs. \ \text{list alloc} \ \text{nxt} \ p \ zs \ \text{NULL} \ \land \ \text{list alloc} \ \text{nxt} \ q \ ys \ \text{NULL} \ \land \ XS = \text{rev} \ ys \ @ \ zs \ \land \ \text{set} \ zs \ \cap \ \text{set} \ ys = \{\} \ \land \ \text{distinct} \ zs \]

- We write to \(p \), such that we must
 - Extract \(p \) from the list abstraction
 - Prove that green nodes are not changed
 - Apply separation lemma for lists
 - Finally add node \(p \) to list at \(q \)

Before reading on, look at the "cheat sheet" on p. 7
Looking at the Single Steps

- Extract p from the list abstraction

\[
[p \neq \text{NULL}; \exists xs'. zs = p \neq xs' \land \text{alloc } p \land \text{list alloc } \text{nxt } (\text{field-get } \text{nxt } p) \times s' \text{ NULL}; \\
\text{list alloc } \text{nxt } q \times y s \text{ NULL}; \text{set } zs \cap \text{set } ys = \{\}; \text{distinct } zs
\]
\[\implies \exists ysa \text{ zsa.} \\
\text{list alloc } (\text{field-upd } \text{nxt } p \times q) \text{ (field-get } \text{nxt } p) \times zsa \text{ NULL} \land \\
(\exists xs'. ysa = p \neq xs' \land \text{alloc } p \land \text{list alloc } (\text{field-upd } \text{nxt } p \times q) \times q \times s' \text{ NULL}) \land \\
\text{set } zsa \cap \text{set } ysa = \{\} \land \text{distinct } zsa \land \text{rev } ys @ zsa = \text{rev } ysa @ zsa
\]

- \exists-quantifiers are annoying (\text{clarsimp} & \text{exI})

\[
[p \neq \text{NULL}; \text{list alloc } \text{nxt } q \times y s \text{ NULL}; \text{alloc } p; \\
\text{list alloc } \text{nxt } (\text{field-get } \text{nxt } p) \times x s' \text{ NULL}; p \notin \text{set } y s; \text{set } xs' \cap \text{set } y s = \{\}; \\
p \notin \text{set } xs'; \text{distinct } xs'
\]
\[\implies \text{list alloc } (\text{field-upd } \text{nxt } p \times q) \text{ (field-get } \text{nxt } p) \times x s' \text{ NULL} \land \\
\text{list alloc } (\text{field-upd } \text{nxt } p \times q) \times y s \text{ NULL} \land \\
\text{set } xs' \cap \text{set } (p \neq y s) = \{\} \land \text{rev } y s @ p \neq xs' = \text{rev } (p \neq y s) @ x s'
\]

- Only remaining problem: side-effects
Rewriting with the Separation Lemma

- Simplify: $\text{list alloc (field-upd \, nxt \, p \, q) (field-get \, nxt \, p) \, xs' \, NULL}$

\implies Pre-condition of list_sep yields goal $p \notin \text{set} \, xs'$

- Nice: given by the distinct clause of the invariant

- Apply same ideas to second list abstraction

- In this case we could also use a lemma on the special case [3]:

 lemma list-hd-not-in-tl:
 "list alloc nxt (field-get nxt p) xs NULL $\implies p \notin \text{set} \, xs$"
Slightly More Automatic Proofs

- Have understood outline of proof
 - Unfold lists by list-step
 - Remove side-effects by list-sep
 - All side-conditions are proven by auto

⇒ Isabelle should be of more assistance

```
apply vcg
apply (auto simp add: list-step)
apply (rule-tac x="p # ys" in exl)
apply auto
done
```

- Only a little help needed on one ∃-quantifier

⇒ Can be get rid of this remaining piece of interaction?
Ghost Variables
Ghost-Variblen

- Idea: witnesses for \(\exists \)-quantifiers follow computation
 \[\Rightarrow \text{Write down witnesses as “assignments”} \]
- Ghost variables (e.g. [1])
 - Can be written to like ordinary variables
 - Can be read in assertions & ghost statements
 - Cannot be read in non-ghost statements
 \[\Rightarrow \text{Will not be required during execution} \]
 - Content: any HOL values (lists, trees, functions, ...)
- Example: list-sum with ghost variables (interactive)
- Beware: \(\neq \) auxiliary variables
 - Those are \(\forall \)-quantified
 - They cannot be modified
 - Goal: connect pre-/post-condition & invariants
List Reversal with Ghost Variables

\[q = \text{null}; \]

\[// @ ys = [] \]
\[// @ zs = XS \]

/*@ list node-alloc node-next p zs \text{null} \wedge
 list node-alloc node-next q ys \text{null} \wedge
 \text{set} \text{zs} \cap \text{set} \text{ys} = \{\} \wedge \text{distinct} \text{zs} \wedge
 XS = \text{rev} \text{ys} @ zs */

while (p != \text{null}) {
 \[t = p \rightarrow \text{next}; \]
 \[p \rightarrow \text{next} = q; \]
 \[q = p; \]
 \[p = t; \]
 \[// @ ys = (\text{hd} \text{zs}) \# \text{ys} \]
 \[// @ zs = \text{tl} \text{zs} \]
}

\[\ldots \]

by vcg (fastforce simp add: list-step)+ // that’s it!
Looking at the Details

• Loop updates ghost state

 list node-alloc node-next p zs NULL ∧
 list node-alloc node-next q ys NULL ∧

 ...

 //@ ys = (hd zs) # ys
 //@ zs = tl zs

• Compare to idea of code

![Diagram showing list nodes and pointers](image)
Example: Destructive List Append

```c
if (p == null)
    r = q;
else {
    r = p;
    //@ xs1 = []
    //@ xs2 = XS
    while (p->next != null) {
        p = p->next;
        //@ xs1 = xs1 @ [ hd xs2 ]
        //@ xs2 = tl xs2
    }
    p->next = q;
}
```
The Proof Structure with Ghost State

- Previously: $\exists y_s. \text{list node-alloc node-next } p \ y_s \ \text{NULL} \land \cdots$

\Rightarrow Must fill y_s while proving

- Ghost state: "result" of reading a list from a heap is given

- Can simplify proving proving by classical reasoners

- Introduce rewrite rules

 \[
 \begin{align*}
 \text{list alloc } \text{nxt } p \ [] q &= (p = q) \\
 \text{list alloc } \text{nxt } p \ (x \neq xs) q &= (p = x \land \text{alloc} p \land p \neq \text{NULL} \land \text{list alloc } \text{nxt} \ (p \rightarrow \text{nxt}) \ xs \ q) \\
 \text{list alloc } \text{nxt } p \ (xs @ y_s) q &= (\exists \ r. \ \text{list alloc } \text{nxt } p \ xs \ r \land \text{list alloc } \text{nxt } r \ y_s \ q)
 \end{align*}
 \]
The Core Assertions

- **Precondition**

 \[\text{list node-alloc node-next } p \text{ XS NULL} \land \text{list node-alloc node-next } q \text{ YS NULL} \]

- **Postcondition**

 \[\text{list node-alloc node-next } r \text{ (XS @ YS) NULL} \]

- **Invariant**

 \[\text{list node-alloc node-next } r \text{ xs1 } p \land \text{list node-alloc node-next } p \text{ xs2 NULL} \land \text{list node-alloc node-next } q \text{ YS NULL} \land \text{XS } = \text{ xs1 @ xs2 } \land p \neq \text{NULL} \]
Adding Disjointness Assertions

- Clearly the two input lists are disjoint
 \[\text{set } XS \cap \text{set } YS = \{\} \]

- Furthermore, we find that the first list must not be cyclic
 \[\text{distinct } XS \]

- Both are maintained (obviously) by the loop

- And then enable us to reason about the final
 \[p->\text{next} = q; \]
Conclusion

- Concept: ghost state
 - Store HOL values in mutable locations
 - Cannot access from usual program
 ⇒ Not present during execution

- Role in proofs: provide witnesses for existentials
 ⇒ Proofs can "compute" abstractions
 ⇒ Proofs become more automatic
 ⇒ The (efficient) simplifier can do more
 ⇒ SMT-Solvers can do more [2, 4]
References

