Exercise 1 (Fixed-point Combinator)

- Use a fixed-point combinator to compute the length of lists on the encoding given in the last tutorial.
- Find an easier solution for the encoding from the last homework.

Exercise 2 (β-reduction on de Bruijn Preserves Substitution)

We consider an alternative representation of λ-terms that is due to de Bruijn. In this representation, λ-terms are defined according to the following grammar:

$$ d ::= i \in \mathbb{N} \mid d_1 \ d_2 \mid \lambda \ d $$

Define substitution and β-reduction on de Bruijn terms.

Now restate Lemma 1.2.5 for de Bruijn terms and prove it:

$$ s \rightarrow_\beta s' \implies s[u/x] \rightarrow_\beta s'[u/x] $$

Homework 3 (Multiplication)

Define multiplication using fix and prove its correctness. You can assume that you are given a predecessor function pred such that:

- pred 0 →β 0
- pred (succ n) →β n

Homework 4 (Efficient Substitution on de Bruijn)

We define a new lifting operator \uparrow:

$$ i \uparrow^l = \begin{cases} i, & \text{if } i < l \\ i + n, & \text{if } i \geq l \end{cases} $$

$$ (d_1 \ d_2) \uparrow^l = d_1 \uparrow^l \ d_2 \uparrow^l $$

$$ (\lambda \ d) \uparrow^l = \lambda \ d \uparrow^l_{i+1} $$

Use \uparrow to define a more efficient version of substitution for de Bruijn terms that only applies lifting in the case that a variable is actually replaced by a term. Prove that $t[s/0]$ yields the same result for both, your new version and the version from the tutorial. Hint: Find a suitable generalization first.
Homework 5 (Expanding Lets)

We have a language with let-expressions, i.e.:

\[t = v \mid t \mid \text{let } v = t \text{ in } t \]

Write a program which expands all let-expressions. The let-semantics are:

\[(\text{let } v = t_1 \text{ in } t_2) = (\lambda v. t_2) \, t_1 \]

If you want to use a language different from ML, Ocaml, Haskell, Java, and Python, please talk to the tutor first.