Homework is due on May 25, before the tutorial.

Much of this exercise sheet involves the use of Birkhoff’s Theorem, which tells us that various relations induced by \(E \) are equivalent. So for each problem, we are free to choose the most appropriate relation:

\[
s \leftrightarrow_s \; t \iff E \vdash s \approx t \iff E \vdash s \approx t
\]

Exercise 1 (H) (Equivalence Classes)

Let \(\Sigma = \{ f, g \} \) and

\[
E = \{ f(f(x)) \approx f(x), \; g(f(x)) \approx f(x), \; f(g(x)) \approx g(x), \; g(g(x)) \approx g(x) \}
\]

a) Describe the equivalence classes of \(\approx_E \).

b) For each equivalence class \([t]_{\approx_E}\), determine a shortest term \(\hat{t} \) in \([t]_{\approx_E}\).

c) Give a model for \(E \) that has more than one element.

Exercise 2 (H) (Congruence Closure)

Let \(\Sigma = \{ f, a, b \} \) and \(G = \{ f(a, b) \approx a \} \). Using congruence closure, decide whether the terms \(s \) and \(t \) are equivalent with respect to the equation set \(G \). Use the abstract algorithm on equation sets.

a) \(s = f(f(a, b), b), \quad t = a \)

b) \(s = f(f(a, b), b), \quad t = b \)

Exercise 3 (H) (More General Substitutions)

Let \(\sigma \) and \(\sigma' \) be substitutions such that each one is an instance of the other: Formally, we have both \(\sigma \lesssim \sigma' \) and \(\sigma \gtrsim \sigma' \). Show that in this case, there must exist a renaming \(\rho \) (i.e., an injective substitution where \(\text{Ran}(\rho) \subseteq V \)) such that \(\sigma = \rho \sigma' \).

(Continued on back)
Exercise 4 (T) (Consistency)

A set E of equations is called consistent if there exists a model of E with more than one element. Show the following statements:

a) E is inconsistent if and only if $E \vdash x \approx y$ (for distinct variables x and y) is derivable as a syntactic consequence of E.

b) If E includes an equation of the form $t \approx x$ with $x \notin \text{Var}(t)$, then E is inconsistent.

c) If there is a model of E with two elements, then for each $n \in \mathbb{N}$ there is a model of E with 2^n elements. Hint: Consider pairs.

Exercise 5 (T) (Commutativity of $+$)

Let $\Sigma = \{0, s, +\}$ and $E = \{x + 0 \approx x, x + s(y) \approx s(x) + y\}$.

a) Show that $E \models x + s(s(0)) \approx s(s(x))$ and $E \models s^i(0) + s^i(0) \approx s^j(0) + s^j(0)$.

b) Show that $E \not\models x + y \approx y + x$.
 Hint: Give a model of E where $+$ is not commutative.