Exercise 29 (Most General Unifier)

Let S and T be unification problems. Moreover, let σ be a most general unifier for S and θ be a most general unifier for $\sigma(T)$. Show that $\theta\sigma$ is a most general unifier for $S \cup T$.

Solution

- $\theta\sigma$ is a unifier of $S \cup T$:

 \[
 \text{Given: } \sigma \in \mathcal{U}(S), \ \theta \in \mathcal{U}(\sigma(T)) \\
 \text{Claim: } \theta\sigma \in \mathcal{U}(S \cup T)
 \]

 \[
 \begin{align*}
 \sigma(s) = \sigma(t) & \implies \theta\sigma(s) = \theta\sigma(t) \\
 \sigma(s) \neq \sigma(t) & \implies s \not\sim t \in T \\
 & \implies \sigma(s) \not\sim \sigma(t) \in \sigma(T) \\
 & \implies \theta\sigma(s) = \theta\sigma(t) \quad \text{(as } \theta \in \mathcal{U}(\sigma(T)))
 \end{align*}
 \]

- $\theta\sigma$ is most general unifier of $S \cup T$:

 \[
 \text{Proof. Let } s \not\sim t \in S \cup T. \ \text{Case distinction over } \sigma(s) = \sigma(t).
 \]

 \[
 \begin{align*}
 \sigma(s) = \sigma(t) & \implies \theta\sigma(s) = \theta\sigma(t) \\
 \sigma(s) \neq \sigma(t) & \implies s \not\sim t \in T \\
 & \implies \sigma(s) \not\sim \sigma(t) \in \sigma(T) \\
 & \implies \theta\sigma(s) = \theta\sigma(t) \quad \text{(as } \theta \in \mathcal{U}(\sigma(T)))
 \end{align*}
 \]

Exercise 30 (Equivalence Relations)

Prove that the notions of a equivalence relation and a partition coincide.

Reminder: A set of sets P is called a partition of a set M iff all elements of P are pairwise disjoint, P does not contain the empty set, and $\bigcup P = M$.
Solution

Every equivalence relation gives rise to a partition, and vice versa. We give a construction for each direction.

- Let \(\simeq \subseteq M \times M \) be an equivalence relation over the set \(M \). Thus, reflexivity, symmetry and transitivity holds for \(\simeq \). We can define a partition \(P \) as follows:

\[
P = \{ \{ y \mid y \in M \wedge x \simeq y \} \mid x \in M \}
\]

To show: \(P \) is a partition of \(M \).

Proof.
- Let \(P' \in P \) which is induced by some \(x \in M \). Since \(\simeq \) is reflexive, at least \(x \) itself is in \(P' \). Hence, \(P' \neq \emptyset \).
- Let \(P_1, P_2 \in P \) two different elements of \(P \). Assume that there is an \(x \) such that \(x \in P_1 \) and \(x \in P_2 \). By symmetry and transitivity, that means that all elements of \(P_1 \) and \(P_2 \) are in the equivalence relation, which means that \(P_1 = P_2 \). Hence, \(P_1 \) and \(P_2 \) must be disjoint.
- \(\bigcup P \subseteq M \) is trivial.
- \(M \subseteq \bigcup P \) follows from reflexivity.

- Let \(P \) be a partition of \(M \). We construct \(\simeq \) as follows:

\[
x \simeq y \iff \exists P' \in P, x \in P' \wedge y \in P'
\]

To show: \(\simeq \) is an equivalence relation.

Proof.
- Let \(x \in M \). Pick the \(P' \in P \) such that \(x \in P' \). By definition of \(\simeq \), \(x \simeq x \).
- Let \(x, y \in M \). Assume \(x \simeq y \). Obtain \(P' \in P \) such that \(x, y \in P' \). By definition of \(\simeq \), \(y \simeq x \).
- Let \(x, y, z \in M \). Assume \(x \simeq y \) and \(y \simeq z \). For both, obtain \(P_1, P_2 \in P \) such that \(x, y \in P_1 \) and \(y, z \in P_2 \). Since \(y \in P_1 \cap P_2 \) and because \(P \) is a partition, \(P_1 \) must be the same as \(P_2 \). Finally, \(x, z \in P_1 = P_2 \), hence \(x \simeq z \).

Both constructions are inverses of each other. That is, starting with an equivalence relation, constructing a partition, then constructing an equivalence relation again, produces the original relation, and vice versa. (The proof is left as an exercise to the reader.)
Exercise 31 (Termination)

A term rewriting system R is called right reduced, if for all $(l \rightarrow r) \in R$, the right hand side r is irreducible. Show that every right reduced and right ground term rewriting system terminates.

Hint: Consider the positions in the term at which rules from R may be applied, and specify a suitable order on terms. Is there a simpler way to get this lemma as a corollary from a lemma that was presented in the lecture?

Solution

The argument that the number of positions where a reduction may be applied decreases in each step does not work. *Counterexample:* TRS $f(c) \rightarrow d$ and $b \rightarrow c$

Consider the starting term $f(b)$. It has exactly one redex, namely b. We get: $f(b) \rightarrow f(c)$. But now we again have one redex: $f(c) \rightarrow d$

However, the above example demonstrates that the new redex lays over the old one. This leads to the following proof:

Proof. For every term t, all reduction sequences starting in t are finite. Informally, this holds as every term t has only finitely many redexes. If a rule is applied at position p in t, then below p no further rules can be applied (as all right hand sides are irreducible, and as they contain no variables, they stay irreducible). Above position p, further rules may be applied, but this is only possible finitely often, until the root of the term is reached.

A more formal proof uses the multiset order to prove termination:

Proof. On the set of positions in t, we have the following terminating order:

$$p_1 < p_2 \iff p_1 \text{ properly above } p_2 \quad (\text{i.e. } \exists x \in \mathbb{N}^+. \ p_1 x = p_2)$$

Let $P(t)$ be the multiset of positions of t, at which a rule of R can be applied. A position p occurs multiple times in $P(t)$, if more than one rule can be applied at p.

For each application of a rule $l \rightarrow r$ at position p in t_1 that yields $t_1 \rightarrow t_2$, we have:

$$P(t_1) \succ_{\text{mul}} P(t_2), \text{ as } P(t_2) = (P(t_1) - X) \cup Y \land \forall y \in Y. \exists x \in X. \ y < x$$

where X is the set of positions at which rules can be applied in t_1 but not in t_2. X contains at least the position p.

Y is the set of positions, at which rules can be applied in t_2 but not in t_1.

If Y is not empty, we have for all $p' \in Y$: $p' < p$.

Thus, for every reduction sequence, there is a sequence of multisets, that decreases due to the multiset ordering. As this multiset ordering terminates, all reduction sequences terminate. \(\square\)
There is also a simpler way, to get this lemma as a corollary from Lemma 5.1.8:

Let R be a finite right-ground term rewriting system. Then, the following statements are equivalent:

a) R does not terminate
b) There exists a rule $l \rightarrow r \in R$ and a term t such that $r \xrightarrow{+} R t$ and t contains r as a subterm.

In our case, a reduction sequence starting with r does not exists, as r is irreducible, by assumption. Thus, R terminates.

Homework 32 (Compactness)

Prove that every satisfiable set of equations over a finite set of variables contains a finite subset that has the same solutions.

Note that equations are interpreted in the term algebra.

Hint: Select a countable subset of the set of equations.

Homework 33 (Deciding Termination for Right-Ground TRSs)

In the lecture, we discussed a procedure to decide termination of right-ground term rewriting systems. It is important that we use a breadth-first search strategy, as you shall demonstrate in this exercise.

a) Given the following procedure that uses a depth-first approach:

 Input A right ground term rewriting system $R = \{l_1 \rightarrow r_1, \ldots, l_n \rightarrow r_n\}$.

 Procedure Enumerate all reduction sequences that start with r_1, in depth-first order.
 If one of those sequences contains r_1 as a subterm, output *non-terminating*.
 Otherwise continue with the sequences starting at r_2, and so on. If all right hand sides have been processed, output *terminating*.

 Find a right-ground term rewriting system such that the above procedure does not terminate.

b) Determine whether the following rewriting systems terminate using the breadth-first approach:

 \[
 \begin{align*}
 R_1 = \{ f(x, x) \rightarrow f(a, b), b \rightarrow c \} \\
 R_2 = \{ f(x, x) \rightarrow f(a, b), b \rightarrow a, b \rightarrow c \}
 \end{align*}
 \]

 c) Implement the correct algorithm in Haskell. More instructions can be found on the lecture website.