Exercise 45 (Linear Term Rewriting Systems)

A rewrite rule $l \rightarrow r$ is called left-linear if every variable in l occurs exactly once. Similarly, $l \rightarrow r$ is called right-linear if every variable in r occurs exactly once. A rule is linear if it is both right- and left-linear. We say that a term rewriting system is linear if it contains only linear rules.

Show:

a) Every linear term rewriting system R that has no critical pairs is confluent. Give a self-contained proof; do not simply apply Corollary 6.3.11 from the book!

Hint: Show that R is strongly confluent.

b) If R is a linear term rewriting system, and for every critical pair (t_1, t_2) there exists t_0 such that $t_1 \rightarrow t_0 \leftarrow t_2$, then R is confluent.

Hint: Extend the proof of the previous statement.

Solution

a) Proof. We show that for any two rules

1. $l_1 \rightarrow r_1$ (1)
2. $l_2 \rightarrow r_2$ (2)

from R, we have:

$x \overset{(1)}{\leftarrow} t \overset{(2)}{\rightarrow} y \Rightarrow \exists z. x \overset{\rightarrow}{\rightarrow} z \overset{\leftarrow}{\leftarrow} y$

Hence, R is strongly confluent, and thus also confluent.

Let p be the application position of rule (1) and q the application position of rule (2) in a term t.

We have either $p || q$, $p \geq q$ or $q \geq p$. Case distinction:

- The case $p || q$ is easy.
$q \geq p$. As R has no critical pairs, the position q is below the range that is matched by l_1 in t.

As R is linear, and in particular, all right and left hand sides contain any variable at most once, the application of a rule $l_1 \rightarrow r_1$ can move the application position of rule $l_2 \rightarrow r_2$ to at most one q'.

If r_1 does not contain the respective variable, the rule $l_2 \rightarrow r_2$ cannot be applied. But we then have:
b) Additionally to the cases from the previous part, we have to regard the case $p < q$ for a critical pair. By assumption, we have for each critical pair (t_1, t_2) a t_0 with $t_1 \xrightarrow{\sim} t_0 \xleftarrow{\sim} t_2$:

\[p \geq q. \text{ Symmetric.} \]

\[\square \]
Exercise 46 (λ-Terms)

Evaluate the following substitutions:

a) \((\lambda y.x(\lambda x.x))[\lambda y.x y/ x]\)
b) \((\lambda v.v x)(\lambda v.v y)/ x\)

Rewrite the following terms such that they are completely parenthesized and conform to the grammar for the λ-calculus given in the lecture (without any shortcut notations).

c) \(u x(y z)(\lambda v.v y)\)
d) \((\lambda x y z.x z)(\lambda y z)(\lambda z)(\lambda x x)(\lambda y y)uvw\)

Rewrite the following terms such that there are as few parentheses as possible, and apply all shortcut notation from the lecture:

e) \(((u(\lambda x.v)(\lambda x.w)))(\lambda x.x)\)
f) \(((v(\lambda x.v)(\lambda x.w)))(\lambda x.x)uv\\)

Solution

a) \(\lambda y'(\lambda y.x y)(\lambda x.x)\)
b) \(y(\lambda x.v)(\lambda y.y)z\)
c) \(((u x)(y)(\lambda v.v y))\)

Exercise 47 (Formalizations with λ-Terms)

Express the following propositions as λ-terms. Use the constant D as a derivative operator.
a) The derivative of x^2 is $2x$.

b) The derivative of x^2 at 3 is 6.

c) Let f be a function, and let g be defined as $g(x) := f(x^2)$. The derivative of g at x is different from the derivative of f at x^2.

d) Formulate the proposition c) without using the auxiliary function symbol g.

Solution

a) $D(\lambda x.x^2) = \lambda x.2x$

b) $(D(\lambda x.x^2)) 3 = 6$

c) $(Dg)x \neq (Df)(x^2)$

d) $(D(\lambda x.f(x^2)))x \neq (Df)(x^2)$

Homework 48 (Strong Confluence)

Let \rightsquigarrow be a relation with $\rightarrow \subseteq \rightsquigarrow \subseteq \ast \rightarrow$.

Show that \rightsquigarrow is strongly confluent iff \(\forall t_1 t_2 s. t_1 \leftarrow s \rightsquigarrow t_2 \implies \exists t. t_1 \rightsquigarrow^* t \leftarrow t_2. \)

(Strong confluence of \rightarrow is \(\forall t_1 t_2 s. t_1 \leftarrow s \rightarrow t_2 \implies \exists t. t_1 \rightarrow^* t \leftarrow t_2. \))

Homework 49 (Confluence)

Let R be the following term rewriting system:

\[
\{ f(x, x) \rightarrow a, \ c \rightarrow g(c), \ g(x) \rightarrow f(x, g(x)) \}\n\]

Is R confluent? Justify your answer.

Homework 50 (Substitution Lemma)

Show that, given $x \neq y$ and $x \notin \text{FV}(u)$:

\[
s[t/x][u/y] = s[u/y][t[u/y]/x] \]