Exercise 7.1. [QE for DLO]
Use the quantifier-elimination procedure for DLOs to check whether the following formula is a member of \(\text{Th}(DLO) \):

\[
\exists x \forall y \exists z ((x < y \lor z < x) \land y < z)
\]

Exercise 7.2. [Compactness for FOL]
Prove the Compactness Theorem for first-order logic:

If every finite subset of a (countable) set \(M \) of formulas has a model, then \(M \) as a whole has a model.

Hint: You may use the following definitions and theorems:

Let \(M = \{F_1, F_2, \ldots\} \). Then \(\text{skolem}(M) = \{F'_1, F'_2, \ldots\} \), where \(F'_i \) is a Skolem form of \(F_i \), and the Skolem-functions in the \(F'_i \) are pairwise disjoint.

Note: Wlog, we assume that \(M \) is of a form that allows us to find enough fresh function symbols for Skolem functions.

Theorem: \(M \) is satisfiable iff \(\text{skolem}(M) \) is satisfiable.

Exercise 7.3. [Axiomatizations and Compactness]
Using compactness, show that if a theory is finitely axiomatizable, any countable axiomatization of it has a finite subset that axiomatizes the same theory. In other words, if \(\text{Cn}(\Gamma) = \text{Cn}(\Delta) \) with \(\Gamma \) countable and \(\Delta \) finite, then there is a finite \(\Gamma' \subseteq \Gamma \) with \(\text{Cn}(\Gamma') = \text{Cn}(\Gamma) \).
Homework 7.1. [Theories] (5 points)

1. Show $Cn(S) = Th(Mod(S))$, i.e. show $Th(Mod(S)) = \{ F \mid F$ Σ-sentence and $S \models F \}$

2. Show that Cn is a closure operator, i.e. Cn fulfills the following properties:
 - $S \subseteq Cn(S)$
 - if $S \subseteq S'$ then $Cn(S) \subseteq Cn(S')$
 - $Cn(Cn(S)) = Cn(S)$

Homework 7.2. [Quantifier Elimination for $Th(\mathbb{N}, 0, S, =)$] (5 points)

Give a quantifier-elimination procedure for $Th(\mathbb{N}, 0, S, =)$ where S is the successor operation on natural numbers, i.e. $S(n) = n + 1$.

Hint: $a = b$ iff $S^k(a) = S^k(b)$ for any $a, b, k \in \mathbb{N}$.

Homework 7.3. [Quantifier Elimination for DLOs with endpoints] (5 points)

Let $\Sigma = \{ a, b, <, = \}$ and replace the last two axioms for DLOs with:

- $\forall x (x = a \lor a < x)$
- $\forall x (x = b \lor x < b)$

Modify the quantifier-elimination procedure for dense linear orders to obtain a quantifier-elimination procedure for this theory.

What happens if there is only one endpoint?

Homework 7.4. [Decidable Axiomatizations] (5 points)

Show that any set of sentences that is axiomatized by a recursively enumerable set is also axiomatized by a decidable set.

Hint: For each $n \in \mathbb{N}$ a possible encoding of n as a formula could be of the form

$$F \land \ldots \land F$$

for some formula F.