First-order Predicate Logic
Undecidability

[Cutland, *Computability*, Section 6.1.]
Aim:
Show that validity of first-order formulas is undecidability

Method:
Reduce the halting problem to validity of formulas by expressing program behaviour as formulas

Logical formulas can talk about computations!
Register machine programs (RMPs)

A register machine program is a sequence of instructions I_1, \ldots, I_s. The instructions manipulate registers R_i ($i = 1, 2, \ldots$) that contain (unbounded!) natural numbers.

There are 4 instructions:

\[
\begin{align*}
 R_n &:= 0 \\
 R_n &:= R_n + 1 \\
 R_n &:= R_m \\
 \text{IF } &R_m = R_n \text{ GOTO } p
\end{align*}
\]

Assumption: all jumps in a program go to $1, \ldots, s + 1$; execution terminates when the PC is $s + 1$.

Let r be the maximal index of any register used in a program P. Then the state of P during execution can be described by a tuple of natural numbers

\[
(n_1, \ldots, n_r, k)
\]

where n_i is the contents of R_i and k is the PC (the number of the next instruction to be executed).
Undecidability

Theorem (Undecidability of the halting problem for RMPs)

It is undecidable if a given register machine program terminates with a given input.

We reduce the halting problem for RMPs to the validity problem for first-order formulas.

Notation:

\[P(0) \downarrow = \text{"RMP } P \text{ started in state } (0, \ldots, 0, 1) \text{ terminates"} \]

Theorem

*Given an RMP } P \text{ we can effectively construct a closed formula } \varphi_P \text{ such that } P(0) \downarrow \text{ iff } \models \varphi_P. \text{"}