First-Order Logic
Herbrand Theory
Herbrand universe

The Herbrand universe $T(F)$ of a closed formula F in Skolem form is the set of all terms that can be constructed using the function symbols in F.

In the special case that F contains no constants, we first pick an arbitrary constant, say a, and then construct the terms.

Formally, $T(F)$ is inductively defined as follows:

- All constants occurring in F belong to $T(F)$; if no constant occurs in F, then $a \in T(F)$ where a is some arbitrary constant.

- For every n-ary function symbol f occurring in F, if $t_1, t_2, \ldots, t_n \in T(F)$ then $f(t_1, t_2, \ldots, t_n) \in T(F)$.

Note: All terms in $T(F)$ are variable-free by construction!

Example

$F = \forall x \forall y \ P(f(x), g(c, y))$
Herbrand structure

Let F be a closed formula in Skolem form. A structure \mathcal{A} suitable for F is a **Herbrand structure** for F if it satisfies the following conditions:

- $U_{\mathcal{A}} = T(F)$, and
- for every n-ary function symbol f occurring in F and every $t_1, \ldots, t_n \in T(F)$: $f^\mathcal{A}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.

Fact

*If \mathcal{A} is a Herbrand structure, then $\mathcal{A}(t) = t$ for all $t \in U_{\mathcal{A}}$.***

We call a Herbrand structure that is a model a **Herbrand model**.
Definition

The matrix of a formula F is the result of removing all quantifiers (all $\forall x$ and $\exists x$) from F. The matrix is denoted by F^*.
Fundamental theorem of predicate logic

Theorem

Let F be a closed formula in Skolem form. Then F is satisfiable iff it has a Herbrand model.

Proof

If F has a Herbrand model then it is satisfiable.

For the other direction let \mathcal{A} be an arbitrary model of F. We define a Herbrand structure \mathcal{T} as follows:

- **Universe** $U_T = T(F)$
- **Function symbols** $f^T(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$
- If F contains no constant: $a^\mathcal{A} = u$ for some arbitrary $u \in U_\mathcal{A}$
- **Predicate symbols** $(t_1, \ldots, t_n) \in P^T$ iff $(\mathcal{A}(t_1), \ldots, \mathcal{A}(t_n)) \in P_\mathcal{A}$

Claim: \mathcal{T} is also a model of F.
Claim: \mathcal{T} is also a model of F.

We prove a stronger assertion:

For every closed formula G in Skolem form such that all fun. and pred. symbols in G occur in F:

if $\mathcal{A} \models G$ then $\mathcal{T} \models G$

Proof By induction on the number n of universal quantifiers of G.

Basis $n = 0$. Then G has no quantifiers at all. Therefore $\mathcal{A}(G) = \mathcal{T}(G)$ (why?), and we are done.
Induction step: $G = \forall x H$.

\[
\begin{align*}
\mathcal{A} & \models G \\
\Rightarrow & \text{ for every } u \in U_\mathcal{A}: \mathcal{A}[u/x](H) = 1 \\
\Rightarrow & \text{ for every } u \in U_\mathcal{A} \text{ of the form } u = \mathcal{A}(t)
\quad \text{where } t \in T(G): \mathcal{A}[u/x](H) = 1 \\
\Rightarrow & \text{ for every } t \in T(G): \mathcal{A}[\mathcal{A}(t)/x](H) = 1 \\
\Rightarrow & \text{ for every } t \in T(G): \mathcal{T}(\mathcal{A}(t)/x)(H) = 1 \\
\Rightarrow & \text{ for every } t \in T(G): \mathcal{T}[\mathcal{T}(t)/x](H) = 1 \\
\Rightarrow & \text{ for every } t \in T(G): \mathcal{T}[t/x](H) = 1 \\
\Rightarrow & \mathcal{T}(\forall x H) = 1 \\
\Rightarrow & \mathcal{T} \models G
\end{align*}
\]
Theorem

Let F be a closed formula in Skolem form. Then F is satisfiable iff it has a Herbrand model.

What goes wrong if F is not closed or not in Skolem form?
Herbrand expansion

Let \(F = \forall y_1 \ldots \forall y_n F^* \) be a closed formula in Skolem form. The **Herbrand expansion** of \(F \) is the set of formulas

\[
E(F) = \{ F^*[t_1/y_1] \ldots [t_n/y_n] \mid t_1, \ldots, t_n \in T(F) \}
\]

Informally: the formulas of \(E(F) \) are the result of substituting terms from \(T(F) \) for the variables of \(F^* \) in every possible way.

Example

\[
E(\forall x \forall y \ P(f(x), g(c, y))) =
\]

Note The Herbrand expansion can be viewed as a set of propositional formulas.
Theorem

Let F be a closed formula in Skolem form. Then F is satisfiable iff its Herbrand expansion $E(F)$ is satisfiable (in the sense of propositional logic).

Proof By the fundamental theorem, it suffices to show: F has a Herbrand model iff $E(F)$ is satisfiable.

Let $F = \forall y_1 \ldots \forall y_n F^*$.

\mathcal{A} is a Herbrand model of F

iff for all $t_1, \ldots, t_n \in T(F)$, $\mathcal{A}[t_1/y_1] \ldots [t_n/y_n](F^*) = 1$

iff for all $t_1, \ldots, t_n \in T(F)$, $\mathcal{A}(F^*[t_1/y_1] \ldots [t_n/y_n]) = 1$

iff for all $G \in E(F)$, $\mathcal{A}(G) = 1$

iff \mathcal{A} is a model of $E(F)$
Herbrand’s Theorem

Theorem
Let F be a closed formula in Skolem form.
F is unsatisfiable iff some finite subset of $E(F)$ is unsatisfiable.

Proof Follows immediately from the Gödel-Herbrand-Skolem Theorem and the Compactness Theorem.
Gilmore’s Algorithm

Let F be a closed formula in Skolem form and let F_1, F_2, F_3, \ldots be an computable enumeration of $E(F)$.

Input: F

$n := 0$;

repeat $n := n + 1$;

until $(F_1 \land F_2 \land \ldots \land F_n)$ is unsatisfiable;

return “unsatisfiable”

The algorithm terminates iff F is unsatisfiable.
Semi-decidiability Theorems

Theorem

(a) The unsatisfiability problem of predicate logic is (only) semi-decidable.

(b) The validity problem of predicate logic is (only) semi-decidable.

Proof

(a) Gilmore’s algorithm is a semi-decision procedure.
(The problem is undecidable. Proof later)

(b) F valid iff $\neg F$ unsatisfiable.
Löwenheim-Skolem Theorem

Theorem
Every satisfiable formula of first-order predicate logic has a model with a countable universe.

Proof Let \(F \) be a formula, and let \(G \) be an equisatisfiable formula in Skolem form (as produced by the Normal Form transformations). Fact: Every model of \(G \) is a model of \(F \). (Check this!)

\[
\begin{align*}
F \text{ satisfiable} & \implies G \text{ satisfiable} \\
& \implies G \text{ has a Herbrand model } \mathcal{T} \\
& \implies F \text{ also has that model } \mathcal{T} \\
& \implies F \text{ has a countable model} \\
& \quad \text{(Herbrand universes are countable)}
\end{align*}
\]
Löwenheim-Skolem Theorem

Formulas of first-order logic cannot enforce uncountable models

Formulas of first-order logic cannot axiomatize the real numbers because there will always be countable models