Propositional Logic

Horn Formulas
Efficient satisfiability checks

In the following:

- A very efficient satisfiability check for the special class of Horn formulas.
- Efficient satisfiability checks for arbitrary formulas in CNF: resolution (later).
Horn formulas

Definition
A formula \(F \) in CNF is a **Horn formula** if every disjunction in \(F \) contains at most one positive literal.

A disjunction in a Horn formula can equivalently be viewed as an implication \(K \rightarrow B \) where \(K \) is a conjunction of atoms or \(K = \top \) and \(B \) is an atom or \(B = \bot \):

\[
\begin{align*}
(\neg A \lor \neg B \lor C) & \equiv (A \land B \rightarrow C) \\
(\neg A \lor \neg B) & \equiv (A \land B \rightarrow \bot) \\
A & \equiv (\top \rightarrow A)
\end{align*}
\]
Satisfiability check for Horn formulas

Input: a Horn formula F.

Algorithm building a model (assignment) \mathcal{M}:

for all atoms A_i in F do $\mathcal{M}(A_i) := 0$;

while F has a subformula $K \rightarrow B$
 such that $\mathcal{M}(K) = 1$ and $\mathcal{M}(B) = 0$
 do
 if $B = \bot$ then return “unsatisfiable”
 else $\mathcal{M}(B) := 1$

return “satisfiable”

Maximal number of iterations of the while loop:
 number of implications in F

Each iteration requires at most $O(|F|)$ steps.

Overall complexity: $O(|F|^2)$

[Algorithm can be improved to $O(|F|)$. See Schöning.]
Correctness of the model building algorithm

Theorem

The algorithm returns “satisfiable” iff F is satisfiable.

Proof Observe: if the algorithm sets $M(B) = 1$, then $A(B) = 1$ for every assignment A such that $A(F) = 1$. This is an invariant.

(a) If “unsatisfiable” then unsatisfiable.

We prove unsatisfiability by contradiction.

Assume $A(F) = 1$ for some A.

Let $(A_{i_1} \land \ldots \land A_{i_k} \rightarrow \bot)$ be the subformula causing “unsatisfiable”.

Since $M(A_{i_1}) = \cdots = M(A_{i_k}) = 1$, $A(A_{i_1}) = \ldots = A(A_{i_k}) = 1$.

Then $A(A_{i_1} \land \ldots \land A_{i_k} \rightarrow \bot) = 0$ and so $A(F) = 0$, contradiction.

So F has no satisfying assignments.
(b) If “satisfiable” then satisfiable.
After termination with “satisfiable”,
for every subformula $K \rightarrow B$ of F, $\mathcal{M}(K) = 0$ or $\mathcal{M}(B) = 1$.
Therefore $\mathcal{M}(K \rightarrow B) = 1$ and thus $\mathcal{M} \models F$.
In fact, the invariant shows that \mathcal{M} is the minimal model of F.