First-Order Logic
Resolution
Resolution for predicate logic

Gilmore’s algorithm is correct and complete, but useless in practice.

We upgrade resolution to make it work for predicate logic.
Recall: resolution in propositional logic

Resolution step:

\[
\{L_1, \ldots, L_n, A\} \quad \text{and} \quad \{L'_1, \ldots, L'_m, \neg A\}
\]

Resulting clause:

\[
\{L_1, \ldots, L_n, L'_1, \ldots, L'_m\}
\]

Resolution graph:

\[
\{\neg A, B\} \quad \{A\} \quad \{\neg B\}
\]

A set of clauses is unsatisfiable iff the empty clause can be derived.
Gilmore’s Algorithm:

Let F be a closed formula in Skolem form and let F_1, F_2, F_3, \ldots be an enumeration of $E(F)$.

$n := 0;
\text{repeat } n := n + 1
\text{until } (F_1 \land F_2 \land \ldots \land F_n)$ is unsatisfiable;

– this can be checked with any calculus for propositional logic

return “unsatisfiable”

“any calculus” \leadsto use resolution for the unsatisfiability test
Literal/clause/CNF is defined as for propositional logic but with the atomic formulas of predicate logic.

A ground term/formula/etc is a term/formula/etc that does not contain any variables.

An instance of a term/formula/etc is the result of applying a substitution to a term/formula/etc.

A ground instance is an instance that does not contain any variables.
Clause Herbrand expansion

Let $F = \forall y_1 \ldots \forall y_n F^*$ be a closed formula in Skolem form with F^* in CNF, and let C_1, \ldots, C_m be the clauses of F^*. The clause Herbrand expansion of F is the set of ground clauses

$$CE(F) = \bigcup_{i=1}^m \{ C_i[t_1/y_1] \ldots [t_n/y_n] \mid t_1, \ldots, t_n \in T(F) \}$$

Lemma

$CE(F)$ is unsatisfiable iff $E(F)$ is unsatisfiable.

Proof Informally speaking, “$CE(F) \equiv E(F)$”.

Ground resolution algorithm

Let F be a closed formula in Skolem form with F^* in CNF. Let C_1, C_2, C_3, \ldots be an enumeration of $CE(F)$.

$n := 0;
S := \emptyset;
repeat
\quad n := n + 1;
\quad S := S \cup \{C_n\};
until S \vdash_{Res} \Box
return “unsatisfiable”

Note: The search for \Box can be performed incrementally every time S is extended.

Example

$F^* = \{\neg P(x), \neg P(f(a)), Q(y)\}, \{P(y)\}, \{\neg P(g(b, x)), \neg Q(b)\}$
Ground resolution theorem

The correctness of the ground resolution algorithm can be rephrased as follows:

Theorem

A formula $F = \forall y_1 \ldots \forall y_n F^*$ with F^* in CNF is unsatisfiable iff there is a sequence of ground clauses $C_1, \ldots, C_m = \Box$ such that for every $i = 1, \ldots, m$

- either C_i is a ground instance of a clause $C \in F^*$, i.e. $C_i = C[t_1/y_1] \ldots [t_n/y_n]$ where $t_1, \ldots, t_n \in T(F)$,
- or C_i is a resolvent of two clauses C_a, C_b with $a < i$ and $b < i$
Where do the ground substitutions come from?

Better:
- allow substitutions with variables
- only instantiate clauses enough to allow one (new kind of) resolution step

Example
Resolve \{P(x), Q(x)\} and \{\neg P(f(y)), R(y)\}
Substitutions as functions

Substitutions are functions from variables to terms: $[t/x]$ maps x to t (and all other variables to themselves)

Functions can be composed.

Composition of substitutions is denoted by juxtaposition: $[t_1/x][t_2/y]$ first substitutes t_1 for x and then substitutes t_2 for y.

Example

$$(P(x, y))[f(y)/x][b/y] = (P(f(y), y))[b/y] = P(f(b), b)$$

Similarly we can compose arbitrary substitutions σ_1 and σ_2: $\sigma_1\sigma_2$ is the substitution that applies σ_1 first and then σ_2.

Substitutions are functions. Therefore

$$\sigma_1 = \sigma_2 \text{ iff } \text{ for all variables } x, x\sigma_1 = x\sigma_2$$
Substitutions as functions

Definition
The domain of a substitution: \(\text{dom}(\sigma) = \{ x \mid x\sigma \neq x \} \)

Example
\(\text{dom}([a/x][b/y]) = \{ x, y \} \)

Substitutions are defined to have finite domain. Therefore every substitution can be written as a simultaneous substitution \([t_1/x_1, \ldots, t_n/x_n]\).
Unifier and most general unifier

Let $L = \{L_1, \ldots, L_k\}$ be a set of literals. A substitution σ is a unifier of L if

$$L_1\sigma = L_2\sigma = \cdots = L_k\sigma$$

i.e. if $|L\sigma| = 1$, where $L\sigma = \{L_1\sigma, \ldots, L_k\sigma\}$.

A unifier σ of L is a most general unifier (mgu) of L if for every unifier σ' of L there is a substitution δ such that $\sigma' = \sigma\delta$.

\[
\begin{array}{ccc}
\sigma & \rightarrow & \sigma' \\
\downarrow & & \downarrow \\
\sigma' & \downarrow & \delta \\
\downarrow & & \downarrow \\
\cdot & & \cdot
\end{array}
\]
<table>
<thead>
<tr>
<th>Unifiable?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(f(x))$</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>$P(g(y))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(x)$</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>$P(f(y))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(f(x))$</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>$P(f(u), f(z))$</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>$P(f(y), y)$</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>$P(f(z), w, g(w))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(g(y), f(a))$</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>$P(g(a), z)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unification algorithm

Input: a set $L \neq \emptyset$ of literals

$\sigma := []$ (the empty substitution)

while $|L\sigma| > 1$ do

Find the first position at which two literals $L_1, L_2 \in L\sigma$ differ

if none of the two characters at that position is a variable

then return “non-unifiable”

else let x be the variable and t the term starting at that position

if x occurs in t

then return “non-unifiable”

else $\sigma := \sigma [t/x]$

return σ

Example

$\{ \neg P(f(z, g(a, y)), h(z)), \neg P(f(f(u, v), w), h(f(a, b))) \}$
Correctness of the unification algorithm

Lemma

The unification algorithm terminates.

Proof Every iteration of the *while*-loop (possibly except the last) replaces a variable x by a term t not containing x, and so the number of variables occurring in $L\sigma$ decreases by one.

Lemma

If L is non-unifiable then the algorithm returns “non-unifiable”.

Proof If L is non-unifiable then the algorithm can never exit the loop normally.
Correctness/completeness of the unification algorithm

Lemma

If \(L \) *is unifiable then the algorithm returns the mgu of* \(L \)
(and so in particular every unifiable set \(L \) *has an mgu).*

Proof Assume \(L \) is unifiable and let \(n \) be the number of iterations of the loop on input \(L \).

Let \(\sigma_0 = [] \), for \(1 \leq i \leq n \) let \(\sigma_i \) be the value of \(\sigma \) after the \(i \)-th iteration of the loop.

We prove for every \(0 \leq i \leq n \):

(a) If \(1 \leq i \), the \(i \)-th iteration does not return “non-unifiable”.

(b) For every unifier \(\sigma' \) of \(L \) there is a substitution \(\delta_i \) such that

\[
\sigma' = \sigma_i \delta_i.
\]

By (a) the algorithm exits the loop normally after \(n \) iterations.

By (b) it returns a most general unifier.
Correctness/completeness of the unification algorithm

Proof of (a) and (b) by induction on i:

Basis ($i = 0$): For (a) there is nothing to prove.
For (b) take $\delta_0 = \sigma'$.

Step ($i \Rightarrow i + 1$)

For (a), since $|L\sigma_i| > 1$ and $L\sigma_i$ unifiable, x and t exist and x does not occur in t, and so “non-unifiable” is not returned.

For (b): Let σ' be a unifier of L. IH: $\sigma' = \sigma_i\delta_i$ for some δ_i.

δ_i must be of the form $[t_1/x_1, \ldots, t_k/x_k, u/x]$ where x_1, \ldots, x_k, x are distinct. Define $\delta_{i+1} = [t_1/x_1, \ldots, t_k/x_k]$.

Note $u = x\delta_i = t\delta_i = t\delta_{i+1}$ ($\sigma_i\delta_i$ is unifier (IH), x not in t)

$$
\begin{align*}
\sigma_{i+1} \delta_{i+1} \\
= \sigma_i [t/x] \delta_{i+1} & \quad \text{(algorithm extends } \sigma_i \text{ with } [t/x]) \\
= \sigma_i [t_1/x_1, \ldots, t_k/x_k, t\delta_{i+1}/x] \\
= \sigma_i [t_1/x_1, \ldots, t_k/x_k, u/x] & \quad \text{(Note } u = t\delta_{i+1}) \\
= \sigma_i \delta_i \\
= \sigma' & \quad \text{(IH)}
\end{align*}
$$
The standard view of unification

A unification problem is a pair of terms $s \equiv t$
(or a set of pairs $\{s_1 \equiv t_1, \ldots, s_n \equiv t_n\}$)

A unifier is a substitution σ such that $s\sigma = t\sigma$
(or $s_1\sigma = t_1\sigma, \ldots, s_n\sigma = t_n\sigma$)
Definition
A substitution ρ is a renaming if for every variable x, $x\rho$ is a variable and ρ is injective on $\text{dom}(\rho)$.
Resolvents for first-order logic

A clause R is a **resolvent** of two clauses C_1 and C_2 if the following holds:

- There is a renaming ρ such that no variable occurs in both C_1 and $C_2 \rho$ and ρ is injective on the set of variables in C_2.
- There are literals $L_1, \ldots, L_m \in C_1$ $(m \geq 1)$ and literals $L'_1, \ldots, L'_n \in C_2 \rho$ $(n \geq 1)$ such that

$$L = \{\overline{L_1}, \ldots, \overline{L_m}, L'_1, \ldots, L'_n\}$$

is unifiable. Let σ be an mgu of L.

- $R = ((C_1 - \{L_1, \ldots, L_m\}) \cup (C_2 \rho - \{L'_1, \ldots, L'_n\}))\sigma$

Example

$C_1 = \{ P(x), Q(x), P(g(y)) \}$ and $C_2 = \{ \neg P(x), R(f(x), a) \}$
Exercise

How many resolvents are there?

<table>
<thead>
<tr>
<th>C_1</th>
<th>C_2</th>
<th>Resolvents</th>
</tr>
</thead>
<tbody>
<tr>
<td>{P(x), Q(x, y)}</td>
<td>{¬P(f(x))}</td>
<td></td>
</tr>
<tr>
<td>{Q(g(x)), R(f(x))}</td>
<td>{¬Q(f(x))}</td>
<td></td>
</tr>
<tr>
<td>{P(x), P(f(x))}</td>
<td>{¬P(y), Q(y, z)}</td>
<td></td>
</tr>
</tbody>
</table>
Why renaming?

Example
\[\forall x (P(x) \land \neg P(f(x))) \]
Resolution for first-order logic

As for propositional logic, $F \vdash_{\text{Res}} C$ means that clause C can be derived from a set of clauses F by a sequence of resolution steps, i.e. that there is a sequence of clauses $C_1, \ldots, C_m = C$ such that for every C_i

- either $C_i \in F$
- or C_i is the resolvent of C_a and C_b where $a, b < i$.

Questions:

Correctness Does $F \vdash_{\text{Res}} \square$ imply that F is unsatisfiable?

Completeness Does unsatisfiability of F imply $F \vdash_{\text{Res}} \square$?
Exercise

Derive □ from the following clauses:

1. \{\neg P(x), Q(x), R(x, f(x))\}
2. \{\neg P(x), Q(x), S(f(x))\}
3. \{T(a)\}
4. \{P(a)\}
5. \{\neg R(a, z), T(z)\}
6. \{\neg T(x), \neg Q(x)\}
7. \{\neg T(y), \neg S(y)\}
Correctness of Resolution for First-Order Logic

Definition
The universal closure of a formula H with free variables x_1, \ldots, x_n:

$$\forall H = \forall x_1 \forall x_2 \ldots \forall x_n H$$

Theorem
Let F be a closed formula in Skolem form with matrix F^* in CNF. If $F^* \vdash_{\text{Res}} \Box$ then F is unsatisfiable.
Completeness: The idea

Simulate ground resolution because that is complete

Lift the resolution proof from the ground resolution proof
Lifting Lemma

Let C_1, C_2 be two clauses and let C'_1, C'_2 be two ground instances with (propositional) resolvent R'. Then there is a resolvent R of C_1, C_2 such that R' is a ground instance of R.

\rightarrow: Substitution
\leftarrow: Resolution
Lifting Lemma: example

\[
\begin{align*}
\{\neg P(f(x)), Q(x)\} & \quad \{P(f(g(y)))\} \\
\downarrow [g(a)/x] & \quad \downarrow [a/y] \\
\{\neg P(f(g(a))), Q(g(a))\} & \quad \{Q(g(y))\} \\
& \quad \downarrow [a/y] \\
& \quad \{Q(g(a))\} \\
& \quad \downarrow \\
& \quad \{Q(g(a))\}
\end{align*}
\]
Completeness of Resolution for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F^* in CNF. If F is unsatisfiable then $F^* \vdash_{\text{Res}} \Box$.

Proof If F is unsatisfiable, there is a ground resolution proof $C'_1, \ldots, C'_n = \Box$. We transform this step by step into a resolution proof $C_1, \ldots, C_n = \Box$ such that C'_i is a ground instance of C_i. If C'_i is a ground instance of some clause $C \in F^*$: Set $C_i = C$

If C'_i is a resolvent of C'_a, C'_b ($a, b < i$): C'_a, C'_b have been transformed already into C_a, C_b s.t. C'_a, C'_b are ground instances of C_a, C_b. By the Lifting Lemma there is a resolvent R of C_a, C_b s.t. C'_i is a ground instance of R. Set $C_i = R$.
Resolution Theorem for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F^* in CNF. Then F is unsatisfiable iff $F^* \vdash_{\text{Res}} \square$.
A resolution algorithm

Input: A closed formula F in Skolem form with matrix S in CNF, i.e. S is a finite set of clauses

while $\square \notin S$ and
 there are clauses $C_a, C_b \in S$ and resolvent R of C_a and C_b
 such that $R \notin S$ (modulo renaming)
do $S := S \cup \{R\}$

The selection of resolvents must be fair:
 every resolvent is added eventually

Three possible behaviours:
 - The algorithm terminates and $\square \in S$
 $\implies F$ is unsatisfiable
 - The algorithm terminates and $\square \notin S$
 $\implies F$ is satisfiable
 - The algorithm does not terminate
 ($\implies F$ is satisfiable)
Refinements of resolution

Problems of resolution:

- Branching degree of the search space too large
- Too many dead ends
- Combinatorial explosion of the search space

Solution:

Strategies and heuristics: forbid certain resolution steps, which narrows the search space.

But: Completeness must be preserved!