First-Order Logic

Resolution
Resolution for predicate logic

Gilmore’s algorithm is correct and complete, but useless in practice.

We upgrade resolution to make it work for predicate logic.
Recall: resolution in propositional logic

Resolution step:

\[
\{L_1, \ldots, L_n, A\} \quad \frac{}{\{L'_1, \ldots, L'_m, \neg A\}} \quad \{L_1, \ldots, L_n, L'_1, \ldots, L'_m\}
\]

Resolution graph:

\[
\{\neg A, B\} \quad \frac{}{\{A\}} \quad \{\neg B\}
\]

\[
\{B\} \quad \frac{}{\square}
\]

A set of clauses is unsatisfiable iff the empty clause can be derived.
Adapting Gilmore’s Algorithm

Gilmore’s Algorithm:

Let F be a closed formula in Skolem form and let F_1, F_2, F_3, \ldots be an enumeration of $E(F)$.

$n := 0$
repeat $n := n + 1$
until $(F_1 \land F_2 \land \ldots \land F_n)$ is unsatisfiable;

– this can be checked with any calculus for propositional logic

return “unsatisfiable”

“any calculus” \rightsquigarrow use resolution for the unsatisfiability test
Terminology

Literal/clause/CNF is defined as for propositional logic but with the atomic formulas of predicate logic.

A ground term/formula/etc is a term/formula/etc that does not contain any variables.

An instance of a term/formula/etc is the result of applying a substitution to a term/formula/etc.

A ground instance is an instance that does not contain any variables.
Clause Herbrand expansion

Let $F = \forall y_1 \ldots \forall y_n F^*$ be a closed formula in Skolem form with F^* in CNF, and let C_1, \ldots, C_m be the clauses of F^*.

The clause Herbrand expansion of F is the set of ground clauses

$$CE(F) = \bigcup_{i=1}^{m} \{ C_i[t_1/y_1] \ldots [t_n/y_n] \mid t_1, \ldots, t_n \in T(F) \}$$

Lemma

$CE(F)$ is unsatisfiable iff $E(F)$ is unsatisfiable.

Proof Informally speaking, “$CE(F) \equiv E(F)$”.

Ground resolution algorithm

Let F be a closed formula in Skolem form with F^* in CNF. Let C_1, C_2, C_3, \ldots be an enumeration of $CE(F)$.

\[
n := 0; \\
S := \emptyset; \\
\text{repeat} \quad n := n + 1; \\
\quad S := S \cup \{C_n\}; \\
\text{until } S \vdash_{\text{Res}} \square \\
\text{return} \text{ “unsatisfiable”}
\]

Note: The search for \square can be performed incrementally every time S is extended.

Example

$F^* = \{\{\neg P(x), \neg P(f(a)), Q(y)\}, \{P(y)\}, \{\neg P(g(b, x)), \neg Q(b)\}\}$
The correctness of the ground resolution algorithm can be rephrased as follows:

Theorem

A formula $F = \forall y_1 \ldots \forall y_n F^*$ with F^* in CNF is unsatisfiable iff there is a sequence of ground clauses $C_1, \ldots, C_m = \square$ such that for every $i = 1, \ldots, m$

- either C_i is a ground instance of a clause $C \in F^*$, i.e. $C_i = C[t_1/y_1] \ldots [t_n/y_n]$ where $t_1, \ldots, t_n \in T(F)$,
- or C_i is a resolvent of two clauses C_a, C_b with $a < i$ and $b < i$
Where do the ground substitutions come from?

Better:

- allow substitutions with variables
- only instantiate clauses enough to allow one (new kind of) resolution step

Example

Resolve \{P(x), Q(x)\} and \{\neg P(f(y)), R(y)\}
Substitutions as functions

Substitutions are functions from variables to terms: \([t/x]\) maps \(x\) to \(t\) (and all other variables to themselves).

Functions can be composed.

Composition of substitutions is denoted by juxtaposition: \([t_1/x][t_2/y]\) first substitutes \(t_1\) for \(x\) and then substitutes \(t_2\) for \(y\).

Example

\[(P(x,y))[f(y)/x][b/y] = (P(f(y),y))[b/y] = P(f(b),b)\]

Similarly we can compose arbitrary substitutions \(\sigma_1\) and \(\sigma_2\): \(\sigma_1\sigma_2\) is the substitution that applies \(\sigma_1\) first and then \(\sigma_2\).

Substitutions are functions. Therefore

\[\sigma_1 = \sigma_2 \iff \text{for all variables } x, \ x\sigma_1 = x\sigma_2\]
Substitutions as functions

Definition
The domain of a substitution: \(\text{dom}(\sigma) = \{ x \mid x\sigma \neq x \} \)

Example
\(\text{dom}([a/x][b/y]) = \{ x, y \} \)

Substitutions are defined to have finite domain. Therefore every substitution can be written as a simultaneous substitution \([t_1/x_1, \ldots, t_n/x_n]\).
Unifier and most general unifier

Let \(L = \{L_1, \ldots, L_k\} \) be a set of literals.

A substitution \(\sigma \) is a unifier of \(L \) if

\[
L_1\sigma = L_2\sigma = \cdots = L_k\sigma
\]

i.e. if \(|L\sigma| = 1 \), where \(L\sigma = \{L_1\sigma, \ldots, L_k\sigma\} \).

A unifier \(\sigma \) of \(L \) is a most general unifier (mgu) of \(L \) if

for every unifier \(\sigma' \) of \(L \) there is a substitution \(\delta \) such that \(\sigma' = \sigma\delta \).
<table>
<thead>
<tr>
<th>Unifiable?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(f(x))) & (P(g(y)))</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>(P(x)) & (P(f(y)))</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>(P(x)) & (P(f(x)))</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>(P(x, f(y))) & (P(f(u), f(z)))</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>(P(x, f(x))) & (P(f(y), y))</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>(P(x, g(x), g^2(x))) & (P(f(z), w, g(w)))</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>(P(x, f(y))) & (P(g(y), f(a))) & (P(g(a), z))</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
Unification algorithm

Input: a set $L \neq \emptyset$ of literals

$\sigma := []$ (the empty substitution)

while $|L\sigma| > 1$ do

Find the first position at which two literals $L_1, L_2 \in L\sigma$ differ

if none of the two characters at that position is a variable

then return “non-unifiable”

else let x be the variable and t the term starting at that position

if x occurs in t

then return “non-unifiable”

else $\sigma := \sigma [t/x]$

return σ

Example

$\{ \neg P(f(z, g(a, y)), h(z)),
\neg P(f(f(u, v), w), h(f(a, b))) \}$
Correctness of the unification algorithm

Lemma

The unification algorithm terminates.

Proof Every iteration of the *while*-loop (possibly except the last) replaces a variable x by a term t not containing x, and so the number of variables occurring in $L\sigma$ decreases by one.

Lemma

If L is non-unifiable then the algorithm returns “non-unifiable”.

Proof If L is non-unifiable then the algorithm can never exit the loop normally.
Correctness/completeness of the unification algorithm

Lemma
If \(L \) is unifiable then the algorithm returns the mgu of \(L \)
(and so in particular every unifiable set \(L \) has an mgu).

Proof Assume \(L \) is unifiable and let \(n \) be the number of iterations
of the loop on input \(L \).
Let \(\sigma_0 = [] \), for \(1 \leq i \leq n \) let \(\sigma_i \) be the value of \(\sigma \) after the \(i \)-th
iteration of the loop.
We prove for every \(0 \leq i \leq n \):
(a) If \(1 \leq i \), the \(i \)-th iteration does not return “non-unifiable”.
(b) For every unifier \(\sigma' \) of \(L \) there is a substitution \(\delta_i \) such that
\[\sigma' = \sigma_i \delta_i. \]
By (a) the algorithm exits the loop normally after \(n \) iterations.
By (b) it returns a most general unifier.
Correctness/completeness of the unification algorithm

Proof of (a) and (b) by induction on i:

Basis ($i = 0$): For (a) there is nothing to prove. For (b) take $\delta_0 = \sigma'$.

Step ($i \Rightarrow i + 1$)

For (a), since $|L \sigma_i| > 1$ and $L \sigma_i$ unifiable, x and t exist and x does not occur in t, and so “non-unifiable” is not returned.

For (b): δ_i must be of the form $[t_1/x_1, \ldots, t_k/x_k, u/x]$, x_1, \ldots, x_k, x distinct. Define $\delta_{i+1} = [t_1/x_1, \ldots, t_k/x_k]$. Note $u = x \delta_i = t \delta_i = t \delta_{i+1}$ ($\sigma_i \delta_i$ is unifier (IH), x not in t)

\[
\begin{align*}
\sigma_{i+1} \delta_{i+1} \\
= \sigma_i [t/x] \delta_{i+1} & \quad \text{(algorithm extends σ_i with $[t/x]$)} \\
= \sigma_i [t_1/x_1, \ldots, t_k/x_k, t \delta_{i+1}/x] & \quad \text{(Note $u = t \delta_{i+1}$)} \\
= \sigma_i [t_1/x_1, \ldots, t_k/x_k, u/x] & \quad \text{(definition of δ_{i+1})} \\
= \sigma_i \delta_i & \quad \text{(IH)} \\
= \sigma' & \quad \text{(IH)}
\end{align*}
\]
The standard view of unification

A unification problem is a pair of terms $s = ? t$
(or a set of pairs $\{s_1 = ? t_1, \ldots, s^n = ? t_n\}$)

A unifier is a substitution σ such that $s\sigma = t\sigma$
(or $s_1\sigma = t_1\sigma, \ldots, s_n\sigma = t_n\sigma$)
Renaming

Definition
A substitution ρ is a renaming if for every variable x, $x\rho$ is a variable and ρ is injective on $\text{dom}(\rho)$.
Resolvents for first-order logic

A clause R is a resolvent of two clauses C_1 and C_2 if the following holds:

- There is a renaming ρ such that no variable occurs in both C_1 and $C_2\rho$ and ρ is injective on the set of variables in C_2

- There are literals L_1, \ldots, L_m in C_1 ($m \geq 1$) and literals L'_1, \ldots, L'_n in $C_2\rho$ ($n \geq 1$) such that

 $$L = \{ \overline{L_1}, \ldots, \overline{L_m}, L'_1, \ldots, L'_n \}$$

 is unifiable. Let σ be an mgu of L.

- $R = ((C_1 - \{L_1, \ldots, L_m\}) \cup (C_2 \rho - \{L'_1, \ldots, L'_n\}))\sigma$

Example

$C_1 = \{ P(x), Q(x), P(g(y)) \}$ and $C_2 = \{ \neg P(x), R(f(x), a) \}$
Exercise

How many resolvents are there?

<table>
<thead>
<tr>
<th>C_1</th>
<th>C_2</th>
<th>Resolvents</th>
</tr>
</thead>
<tbody>
<tr>
<td>${P(x), Q(x, y)}$</td>
<td>${\neg P(f(x))}$</td>
<td></td>
</tr>
<tr>
<td>${Q(g(x)), R(f(x))}$</td>
<td>${\neg Q(f(x))}$</td>
<td></td>
</tr>
<tr>
<td>${P(x), P(f(x))}$</td>
<td>${\neg P(y), Q(y, z)}$</td>
<td></td>
</tr>
</tbody>
</table>
Why renaming?

Example

\(\forall x (P(x) \land \neg P(f(x))) \)
Resolution for first-order logic

As for propositional logic, $F \vdash_{Res} C$ means that clause C can be derived from a set of clauses F by a sequence of resolution steps, i.e. that there is a sequence of clauses $C_1, \ldots, C_m = C$ such that for every C_i

- either $C_i \in F$
- or C_i is the resolvent of C_a and C_b where $a, b < i$.

Questions:

Correctness Does $F \vdash_{Res} \Box$ imply that F is unsatisfiable?

Completeness Does unsatisfiability of F imply $F \vdash_{Res} \Box$?
Exercise

Derive \square from the following clauses:

1. $\{\neg P(x), Q(x), R(x, f(x))\}$
2. $\{\neg P(x), Q(x), S(f(x))\}$
3. $\{T(a)\}$
4. $\{P(a)\}$
5. $\{\neg R(a, z), T(z)\}$
6. $\{\neg T(x), \neg Q(x)\}$
7. $\{\neg T(y), \neg S(y)\}$
Definition
The universal closure of a formula H with free variables x_1, \ldots, x_n:
\[\forall H = \forall x_1 \forall x_2 \ldots \forall x_n H \]

Theorem
Let F be a closed formula in Skolem form with matrix F^* in CNF. If $F^* \vdash_{\text{Res}} \Box$ then F is unsatisfiable.
Completeness: The idea

Simulate ground resolution because that is complete

Lift the resolution proof from the ground resolution proof
Lifting Lemma

Let \(C_1, C_2 \) be two clauses and let \(C'_1, C'_2 \) be two ground instances with (propositional) resolvent \(R' \). Then there is a resolvent \(R \) of \(C_1, C_2 \) such that \(R' \) is a ground instance of \(R \).
Lifting Lemma: example

\[\{ \neg P(f(x)), Q(x) \} \]
\[\overset{[g(a)/x]}{\downarrow} \]
\[\{ \neg P(f(g(a))), Q(g(a)) \} \quad \{ P(f(g(y))) \} \]
\[\overset{[a/y]}{\downarrow} \]
\[\{ Q(g(y)) \} \quad \{ P(f(g(a))) \} \]
\[\overset{[a/y]}{\downarrow} \]
\[\{ Q(g(a)) \} \]
\[\{ Q(g(a)) \} \]
Completeness of Resolution for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F^* in CNF. If F is unsatisfiable then $F^* \vdash_{\text{Res}} \Box$.

Proof
If F is unsatisfiable, there is a ground resolution proof $C'_1, \ldots, C'_n = \Box$. We transform this step by step into a resolution proof $C_1, \ldots, C_n = \Box$ such that C'_i is a ground instance of C_i.

If C'_i is a ground instance of some clause $C \in F^*$:
Set $C_i = C$

If C'_i is a resolvent of C'_a, C'_b ($a, b < i$):
C'_a, C'_b have been transformed already into C_a, C_b s.t. C'_a, C'_b are ground instances of C_a, C_b. By the Lifting Lemma there is a resolvent R of C_a, C_b s.t. C'_i is a ground instance of R.
Set $C_i = R$.
Resolution Theorem for First-Order Logic

Theorem

Let F be a closed formula in Skolem form with matrix F^* in CNF. Then F is unsatisfiable iff $F^* \vdash_{\text{Res} \Box}$.
A resolution algorithm

Input: A closed formula \(F \) in Skolem form with matrix \(S \) in CNF, i.e. \(S \) is a finite set of clauses

while \(\square \notin S \) and
 there are clauses \(C_a, C_b \in S \) and resolvent \(R \) of \(C_a \) and \(C_b \)
 such that \(R \notin S \) (modulo renaming)
do \(S := S \cup \{ R \} \)

The selection of resolvents must be *fair*:
 every resolvent is added eventually

Three possible behaviours:

- The algorithm terminates and \(\square \in S \)
 \(\Rightarrow F \) is unsatisfiable
- The algorithm terminates and \(\square \notin S \)
 \(\Rightarrow F \) is satisfiable
- The algorithm does not terminate
 \((\Rightarrow F \) is satisfiable\())\)
Refinements of resolution

Problems of resolution:

- Branching degree of the search space too large
- Too many dead ends
- Combinatorial explosion of the search space

Solution:
Strategies and heuristics: forbid certain resolution steps, which narrows the search space.

But: Completeness must be preserved!