Exercise 11.1. [Decidable Theories]
Let S be a set of sentences (i.e. closed formulas) such that S is closed under consequence: if $S \models F$ and F is closed, then $F \in S$. Additionally, assume that S is finitely axiomatizable and complete, i.e. $F \in S$ or $\neg F \in S$ for any sentence F.

1. Give a procedure for deciding, given only the axiomatization of S, whether $S \models F$ for a sentence F.
2. Can you obtain a similar result when the assumption is that the axiom system is only recursively enumerable?

Exercise 11.2. [Consequence]
Show that Cn is a closure operator, i.e. Cn fulfills the following properties:

- $S \subseteq Cn(S)$
- if $S \subseteq S'$ then $Cn(S) \subseteq Cn(S')$
- $Cn(Cn(S)) = Cn(S)$

Exercise 11.3. [Axiomatizations and Compactness]
Using compactness, show that if a theory is finitely axiomatizable, any countable axiomatization of it has a finite subset that axiomatizes the same theory. In other words, if $Cn(\Gamma) = Cn(\Delta)$ with Γ countable and Δ finite, then there is a finite $\Gamma' \subseteq \Gamma$ with $Cn(\Gamma') = Cn(\Gamma)$.

Exercise 11.4. [Natural Deduction]
Prove the following formula using natural deduction.

$$\neg(\forall x(\exists y(\neg P(x) \land P(y))))$$
Homework 11.1. [Counterexamples from Sequent Calculus] (4 points)
Consider the statement $\forall x P(x) \rightarrow \neg P(f(x))$.

1. What happens when trying to prove the validity of this formula in sequent calculus?
2. How can we derive a countermodel from the proof tree?
3. Is there a smaller countermodel?

Homework 11.2. [Proofs] (8 points)
Prove the following statements using natural deduction.

1. $\neg \forall x \exists y \forall z (\neg P(x,z) \land P(z,y))$
2. $\exists x (P(x) \rightarrow \forall x P(x))$

Homework 11.3. [Elementary Classes] (8 points)
In this exercise, we assume that all structures and formulas share the same signature Σ.

We define the operator $Mod(S)$ that returns the class of all structures that model a set of formulas S. In other words, $Mod(S)$ contains all A such that $A \models S$.

A class of models M is said to be Δ-elementary if there is a set of formulas S such that $M = Mod(S)$. If S is just a singleton set, i.e. there is a formula F such that $S = \{F\}$, then M is elementary.

Prove:

1. A class of models M is elementary if and only if there is a finite set of formulas S such that $M = Mod(S)$.
2. If M is elementary and $M = Mod(S)$, there is a finite subset $S' \subseteq S$ such that $M = Mod(S')$.