Exercise 7.1. [Herbrand Models]

Given the formula

\[F = \forall x \forall y (P(f(x), g(y)) \land \neg P(g(x), f(y))) \]

1. Specify a Herbrand model for \(F \).
2. Specify a Herbrand structure suitable for \(F \), which is not a model of \(F \).

Solution:

We define \(U_A = T(F) \), i.e., the Herbrand universe for \(F \). We invent a constant \(a \in T(F) \). We define \(f^A \) and \(g^A \) to be the Herbrand interpretations.

1. \(P^A = \{(f(t_1), g(t_2)) \mid t_1, t_2 \in T(F)\} \).
2. \(P^A = \{(g(t_1), f(t_2)) \mid t_1, t_2 \in T(F)\} \).
Exercise 7.2. [(In)finite Models]

1. Show that any model (for a formula of predicate logic) with a universe of size n can be extended to a model of size m for any $m \geq n$. Can it also be extended to an infinite model?

2. Now consider the extension of predicate logic with equality. Does above property still hold?

Solution:

1. Let \mathcal{A} be a model. We pick any $d \in U_{\mathcal{A}}$ as an element to “clone” $m - n$ times.

 The precise construction works as follows: We define $D = \{(d, k) \mid k \in \mathbb{N} \land k < m - n\}$. Now, we extend $U_{\mathcal{A}}$ with D.

 Let \mathcal{A}' be a structure with the universe $U_{\mathcal{A}'} = U_{\mathcal{A}} \uplus D$. All functions and predicate symbols are interpreted identically to \mathcal{A}, with the extension that all elements (d, k) are treated as d.

 We interpret a unary predicate P as follows:

 $$
P_{\mathcal{A}'} = \begin{cases}
P_{\mathcal{A}} & \text{if } d \notin P_{\mathcal{A}} \\
P_{\mathcal{A}} \cup D & \text{otherwise}
\end{cases}
$$

 The construction can be extended for n-ary predicates, by looking at each position separately.

 Similarly, we can give the modified interpretation for a unary function symbol f:

 $$
f_{\mathcal{A}'}(x) = \begin{cases}
f_{\mathcal{A}}(x) & \text{if } x \notin D \\
f_{\mathcal{A}}(d) & \text{if } x = (d, k) \in D
\end{cases}
$$

 Extending to an infinite model works in exactly the same way, except for adding infinitely many copies of d by dropping the $k < m - n$ condition.

2. This does not work, because the $=$ predicate allows one to distinguish between different elements.

 Counterexample: The formula $F = \forall x \forall y (x = y)$ has a trivial model \mathcal{A} with cardinality 1. Obviously, there cannot be any larger model.
Exercise 7.3. [Natural Numbers and FOL]
We consider the following axioms in an attempt to model the natural numbers in predicate logic:

1. \(F_1 = \forall x \forall y (f(x) = f(y) \rightarrow x = y) \)
2. \(F_2 = \forall x (f(x) \neq 0) \)
3. \(F_3 = \forall x (x = 0 \lor \exists y (x = f(y))) \)

Give a model with an uncountable universe for:

1. \(\{F_1, F_2\} \)
2. \(\{F_1, F_2, F_3\} \)

Hint: A set \(S \) is uncountable if there is no bijection between \(S \) and \(\mathbb{N} \).

Solution:

1. \(U_A = \mathbb{R}_0^+ \), \(0^A = 0 \), and \(f^A(x) = x + 1 \)

 \(f^A \) is clearly injective and there is no \(x \) such that \(f^A(x) = 0 \), because \(-1 \notin U_A \).

2. We take \(U_A \) to be the union of the positive real numbers and the non-positive whole numbers, i.e., \(U_A = \mathbb{R}_{>0} \cup \mathbb{Z}_{\leq 0} \).

Let the symbols be interpreted as follows:

\[
0^A = 0 \\
f^A(x) = \begin{cases}
2x & \text{if } x > 0 \\
 x - 1 & \text{if } x \leq 0
\end{cases}
\]

(a) \(f^A \) is defined as two disjoint domains that have disjoint ranges. Both domains are injective, hence the entire function is injective.

(b) \(0 \) is not in the range of \(f^A \): For \(x > 0 \), \(f^A(x) > 0 \) and for \(x \leq 0 \), \(f^A(x) \leq -1 \).

(c) To show: \(x \neq 0 \rightarrow \exists y (x = f(y)) \).

 If \(x < 0 \), then \(x \leq -1 \), hence \(x = f^A(x + 1) \).
 Otherwise, \(x = f^A \left(\frac{x}{2} \right) \).
Homework 7.1. [Invalid Herbrand Models] (8 points)
Recall the fundamental theorem from the lecture: “Let F be a closed formula in Skolem form. Then F is satisfiable iff it has a Herbrand model”.

Explain “what goes wrong” if the precondition is violated: when F is not closed or not in Skolem form. Describe both cases.

Homework 7.2. [Proof of the Fundamental Theorem] (6 points)
Recall the fundamental theorem: Let F be a closed formula in Skolem form. Then F is satisfiable iff it has a Herbrand model. Give the omitted proof for the base case (slide 6, $A(G) = T(G)$).

Homework 7.3. [Herbrand Models] (6 points)
Given the formula

$$F = \forall x (P(f(x)) \leftrightarrow \neg P(x))$$

1. Specify a Herbrand model for F.
2. Specify a Herbrand structure suitable for F, which is not a model of F.