Foundations of Mathematics and Grundlagenkrise

Vincent Steffan

05.06.2018
Introduction

Grundlagenkrise – The foundational crisis
Schools of recovery
Gödels incompleteness theorem
Euklid
Euklid

• Lived in the third century B.C.
• Lived in the third century B.C.
• He tried to summarize all the mathematics done so far in ancient Greece.
Lived in the third century B.C.
He tried to summarize all the mathematics done so far in ancient Greece.
For this he used a collection of postulates and axioms.
"Let the following be postulated:

- To draw a straight line from any point to any point.
- To extend a finite straight line continuously in a straight line.
- To describe a circle with any center and distance, the radius.
- That all right angles are equal to one another.
- (The so-called parallel postulate) That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles."
Axioms

- Things that are equal to the same thing are also equal to one another.
- If equals are added to equals, then the wholes are equal.
- If equals are subtracted from equals, then the remainders are equal.
- Things that coincide with one another are equal to one another.
- The whole is greater than the part.
A first example of a "Grundlagenkrise"
A first example of a "Grundlagenkrise"

- The Pythagoreans discovered that there are numbers that are not a fraction of two integers.
A first example of a ”Grundlagenkrise”

- The Pythagoreans discovered, that there are numbers that are not a fraction of two integers.
- An example: If you take a square with side length 1, the diagonal has length $\sqrt{2}$, which is irrational.
Grundlagenkrise – The foundational crisis

[Image of a person]
Georg Cantor
Cantor wanted to define an axiomatic foundation of all Mathematics.
Cantor wanted to define an axiomatic foundation of all Mathematics.
He did this by establishing set theory in an axiomatic way.
Cantors naive set theory – the axioms

- A set is any collection of definite, distinguishable objects of our intuition or of our intellect to be conceived as a whole (i.e., regarded as a single unity).
Cantors naive set theory – the axioms

• A set is any collection of definite, distinguishable objects of our intuition or of our intellect to be conceived as a whole (i.e., regarded as a single unity).
• A set is completely determined by its members.
Cantors naive set theory – the axioms

- A set is any collection of definite, distinguishable objects of our intuition or of our intellect to be conceived as a whole (i.e., regarded as a single unity).
- A set is completely determined by its members.
- Every property determines a set.
Cantors naive set theory – the axioms

• A set is any collection of definite, distinguishable objects of our intuition or of our intellect to be conceived as a whole (i.e., regarded as a single unity).
• A set is completely determined by its members.
• Every property determines a set.
• Given any set F of nonempty pairwise disjoint sets, there is a set that contains exactly one member of each set in F.
Three paradoxes

- Although this way of defining the term set is quite natural, there occur paradoxes.
Three paradoxa

- Although this way of defining the term set is quite natural, there occur paradoxa.
- Around the year 1900, Cesare Burali-Forti, Gregor Cantor himself and Bertrand Russell found three paradoxa.
Let $A = \{1, \ldots, n\}$. We say A has cardinal number n.

Two sets A and B have the same cardinality, if there is a bijective function $f : A \rightarrow B$.

We say that the cardinality of A is greater or equal than the cardinality of B if there is a surjective function $f : A \rightarrow B$.

The cardinality of A is greater if it is greater of equal, but not equal to the cardinality of B.
Cantors paradox: Cardinal numbers

Theorem. Let \mathcal{A} be a set and denote by $2^\mathcal{A}$ its powerset, i.e. the set of all subsets of \mathcal{A}. Then the cardinality of $2^\mathcal{A}$ is greater than the cardinality of \mathcal{A}.
Cantors paradox

Let \mathcal{A} be the set of all sets. Then – since all subsets of \mathcal{A} are sets – we have $2^\mathcal{A} \subset \mathcal{A}$, which implies, that the cardinality of \mathcal{A} is greater or equal than the cardinality of $2^\mathcal{A}$, which contradicts the theorem.
Schools of recovery

- The mathematicians were shocked by the failure of naive set theory.
Schools of recovery

- The mathematicians were shocked by the failure of naive set theory.
- In order to get to a different foundation of mathematics, three main schools were developed by the leading mathematicians of this time.
Main representatives of Intuitionism: The Dutch mathematician Luitzen Brouwer and his student Arend Heyting.
Intuitionism

- Main representatives of Intuitionism: The Dutch mathematician Luitzen Brouwer and his student Arend Heyting.
- Intuitionism sees mathematical objects as a part of the intuition, as a part of the mind.
Intuitionism

- Main representatives of Intuitionism: The Dutch mathematician Luitzen Brouwer and his student Arend Heyting.
- Intuitionism sees mathematical objects as a part of the intuition, as a part of the mind.
- They thought of infinite sets as potentially infinite. In an infinite set we thus can find any number of elements, but we cannot work with all of them as infinitely many.
Main representatives of Intuitionism: The Dutch mathematician Luitzen Brouwer and his student Arend Heyting.

Intuitionism sees mathematical objects as a part of the intuition, as a part of the mind.

They thought of infinite sets as potentially infinite. In an infinite set we thus can find any number of elements, but we cannot work with all of them as infinitely many.

The intuitionists did not believe in the principle of ”tertium non datur”.
Logicism

- Main representatives: Frege, Boole, Peano, Russell, and Whitehead.
Logicism

- Main representatives: Frege, Boole, Peano, Russell, and Whitehead.
- The logistic approach on a foundation of mathematics was described in the book ”Principia Mathematica” by Whitehead and Russell.
Logicism

- Main representatives: Frege, Boole, Peano, Russell, and Whitehead.
- The logistic approach on a foundation of mathematics was described in the book ”Principia Mathematica” by Whitehead.
- The logicians tried to build mathematics on pure logic.
Logicism

- Main representatives: Frege, Boole, Peano, Russell, and Whitehead.
- The logistic approach on a foundation of mathematics was described in the book “Principia Mathematica” by Whitehead and Russell.
- The logicians tried to build mathematics on pure logic.
- They avoided all known paradoxes, but were not able to prove consistency or completeness of this theory.
Logicism

- Main representatives: Frege, Boole, Peano, Russell, and Whitehead.
- The logistic approach on a foundation of mathematics was described in the book "Principia Mathematica" by Whitehead and Russell.
- The logicians tried to build mathematics on pure logic.
- They avoided all known paradoxes, but were not able to prove consistency or completeness of this theory.
- In this process some powerful tools were developed: As an example, Peano was the first one to use symbols like "∈" or "⇒".
Formalism

- Main initiator of this theory: David Hilbert.
Formalism

- Main initiator of this theory: David Hilbert.
- For the formalists, every mathematical statement was a finite sequence of symbols or language and is completely detached from the real world.
Formalism

- Main initiator of this theory: David Hilbert.
- For the formalists, every mathematical statement was a finite sequence of symbols or language and is completely detached from the real world.
- The formalists worked with so-called formal systems: A formal system consists of:
 - A finite set of symbols to construct formulas
 - A decision procedure to decide whether a formula is true or not.
 - A set of formulas assumed to be true, so-called axioms.
Goedel's incompleteness theorem
In the 1930’s, Kurt Gödel showed, that the goal to find a complete and consistent foundation of mathematics cannot be reached.
A formal system again consists of a language with specified well-defined statements, some axioms and some inference rules.
Formal systems

- A formal system again consists of a language with specified well-defined statements, some axioms and some inference rules.
- A formal system \mathcal{T} is called consistent, if there is no statement A, such that both A and its negation follows from \mathcal{T}.
Formal systems

- A formal system again consists of a language with specified well-defined statements, some axioms and some inference rules.
- A formal system \mathcal{T} is called consistent, if there is no statement A, such that both A and its negation follows from \mathcal{T}.
- A system is called complete, if for every well-defined statement A either A or its negation follows from \mathcal{T}.
Formal systems

• A formal system again consists of a language with specified well-defined statements, some axioms and some inference rules.

• A formal system \mathcal{T} is called consistent, if there is no statement A, such that both A and its negation follows from \mathcal{T}.

• A system is called complete, if for every well-defined statement A either A or its negation follows from \mathcal{T}.

• A third property of a formal system is to be ”sufficiently powerful”, which essentially means, that it can describe basic mathematical concepts as the natural numbers.
Formal systems

- A formal system again consists of a language with specified well-defined statements, some axioms and some inference rules.

- A formal system \mathcal{T} is called consistent, if there is no statement A, such that both A and its negation follows from \mathcal{T}.

- A system is called complete, if for every well-defined statement A either A or its negation follows from \mathcal{T}.

- A third property of a formal system is to be "sufficiently powerful", which essentially means, that it can describe basic mathematical concepts as the natural numbers.

- The property "recursive enumerability" prohibits things like infinitely long proofs. Essentially this property means that every proof can be verified in a mechanical way (e.g. by a computer).
The incompleteness theorems

- **Theorem.** Any sufficiently powerful, recursively enumerable formal system is either inconsistent or incomplete.
The incompleteness theorems

- **Theorem.** Any sufficiently powerful, recursively enumerable formal system is either inconsistent or incomplete.
- **Theorem.** Any sufficiently powerful consistent formal system cannot prove its own consistency.