Exercise 3.1 Boolean If expressions

We consider an alternative definition of boolean expressions, which feature a conditional construct:

datatype ifexp = Bc' bool | If ifexp ifexp ifexp | Less' aexp aexp

1. Define a function ifval analogous to bval, which evaluates ifexp expressions.
2. Define a function translate, which translates ifexp s to bexp s. State and prove a lemma showing that the translation is correct.

Exercise 3.2 Relational aval

Theory AExp defines an evaluation function aval :: aexp ⇒ state ⇒ val for arithmetic expressions. Define a corresponding evaluation relation is_aval :: aexp ⇒ state ⇒ val ⇒ bool as an inductive predicate:

inductive is_aval :: “aexp ⇒ state ⇒ val ⇒ bool”

Use the introduction rules is_aval.intros to prove this example lemma.

lemma “is_aval (Plus (N 2) (Plus (V x) (N 3))) s (2 + (s x + 3))”

Prove that the evaluation relation is_aval agrees with the evaluation function aval. Show implications in both directions, and then prove the if-and-only-if form.

lemma aval1: “is_aval a s v ⇒ aval a s = v”
lemma aval2: “aval a s = v ⇒ is_aval a s v”
theorem “is_aval a s v ⇔ aval a s = v”

Homework 3.1 Compilation to Register Machine

Submission until Tuesday, November 6, 10:00am.

In this exercise, you will define a compilation function from expressions to register machines and prove that the compilation is correct.
The registers in our simple register machines are natural numbers:

type synonym reg = nat

The instructions are:

- “load immediate” an integer value in a register
- load the value of a variable (from the memory state) in a register
- add to a register the value of another register

datatype instr = LDI int reg | LD vname reg | ADD reg reg

Recall that a memory state is a function from variable names to integers. A register state will be a function from registers to integers.

Complete the following definition of the function for executing an instruction given a memory state s and a register state σ, the result being a register state. You need to add the cases of the instruction being “load immediate” and “load”.

fun exec :: “instr ⇒ (vname ⇒ int) ⇒ (reg ⇒ int) ⇒ (reg ⇒ int)” where

exec (ADD r1 r2) s σ = σ (r1 := σ r1 + σ r2)

Next define the function executing a sequence of register-machine instructions, one at a time. We have already defined for you the case of empty list of instructions. You need to add the recursive case.

fun execs :: “instr list ⇒ (string ⇒ int) ⇒ (reg ⇒ int) ⇒ (reg ⇒ int)” where

“execs [] s σ = σ” |

We are finally ready for the compilation function. Your task is to define a function cmp that takes an arithmetic expression a and a register r and produces a list of register-machine instructions whose execution in any memory state and register state should lead to a register state having in r the value of evaluating a in that memory state.

Here is the intended behavior of cmp:

- cmp (N n) r loads immediate n into r
- cmp (V x) r loads x into r
- cmp (Plus a a1) r first compiles a placing the result in r, then compiles $a1$ placing the result in $r + 1$, and finally adds the content of $r + 1$ to that of r (storing the result in r).

fun cmp :: “aexp ⇒ reg ⇒ instr list”

Finally, you need to prove the following correctness lemma, which states that our register-machine compiler is correct, in that executing the compiled instructions of an arithmetic expression yields (in the indicated register) the same result as evaluating the expression.

Hint: For proving correctness, you will need auxiliary lemmas stating that exec commutes with list concatenation and that the instructions produced by cmp a r do not alter registers below r.

lemma cmpCorrect: “execs (cmp a r) s σ r = aval a s”
Homework 3.2 No Uninitialized Registers

Submission until Tuesday, November 6, 10:00am.

In this exercise you will prove that the result of compiling an expression is initialization-safe, in that no ADD operation is applied to registers that have not been previously initialized by a “load” or “load immediate” instruction.

First we consider the following function init that takes a list of register-machine instructions and returns the set of registers that have been initialized in it.

fun init :: “instr list ⇒ reg set” where
"init [] = {}" |
"init (LDI i r # inss) = {r} ∪ init inss" |
"init (LD x r # inss) = {r} ∪ init inss" |
"init (ADD r1 r2 # inss) = init inss"

Notice that the above recursive definition uses nested patterns. Every “fun” definition comes with a customized induction rule that observes its pattern structure: here, the induction rule is called init.induct. Use this rule to prove that init commutes with list concatenation. Hint: indicate the desired rule to the induct method, using rule: init.induct.

lemma init_append[simp]: “init (inss1 @ inss2) = init inss1 ∪ init inss2”

Define recursively the predicate safe with the following behavior: safe inss R holds true iff all the registers that participate in an ADD instruction in inss either belong to R or are previously initialized in inss.

Hint: Use a recursive definition on the first argument with the same pattern structure as for the previous function init.

fun safe :: “instr list ⇒ reg set ⇒ bool”

Prove the following commutation lemma. Hint: As before for init, use the induction rule customized to the definition of the function.

lemma safe_append[simp];
“safe (inss1 @ inss2) R ←→ safe inss1 R ∩ safe inss2 (R ∪ init inss1)”

Prove the following initialization-safety property, stating that in a list of instructions resulted from compiling an expression all the added but not previously initialized registers are in the empty set--i.e., there are no such registers.

lemma initSafe: “safe (cmp a r) {}”

Proof hint: You need to make a more general statement, replacing the empty set with an arbitrary set of registers. You may also need an intermediate lemma about init and cmp.