Homework 12 Verification Condition Generator for Total Correctness

Submission until Tuesday, 22. 1. 2013, 10:00am.

In this homework, your task is to implement a verification condition generator for total correctness, which is also optimized for handling automatically the termination of certain FOR-like while loops.

We start by defining the datatype of total-correctness annotated programs. Notice, compared to the partial correctness case, the extra measure argument of $Awhile$, of type $state \Rightarrow \mathbb{nat}$, aimed at handling termination.

datatype acom =
 ASKIP |
 Aassign vname aexp ("_ __ := ___" [1000, 61] 61) |
 Aseq acom acom ("___; / ___" [60, 61] 60) |
 Aif bexp acom acom ("(IF / THEN / ELSE ___" [0, 0, 61] 61) |
 Awhile assn "state \Rightarrow ___nat" bexp acom ("___; / ___WHILE / DO / ___" [0, 0, 61] 61)

The types of both commands and annotated commands are made instances of the $vars$ class by defining suitable operators (see the homework template).

instantiation com :: $vars$

instantiation acom :: $vars$

Recall from homework 6 the following facts about the interaction between evaluation/execution and $vars$:

lemma $aval_vars$: "$s1 = s2 on X; vars a \subseteq X \implies aval a s1 = aval a s2$"

lemma $confinement$: "$(c,s) \Rightarrow t \implies s = t on (UNIV - vars c)$"

1. Write a function for identifying certain annotated while loops trivially well-behaved w.r.t. termination, which we call “FOR loops”. Namely, a FOR loop is an annotated command of the form $Awhile I M \ (Less \ (V \ x) \ a) \ (c : x := (Plus \ (V \ x) \ (N 1)))$ where x does not appear in a or c and the sets of variables of a and c are disjoint. FOR loops should be identified via a function isF, where $isF b d$ tests if $Awhile I M b d$ is a FOR loop:
fun isF :: “bexp ⇒ acom ⇒ bool” where

isF should be executable—some tests are found in the template.

2. Define a verification condition generator vc for total correctness. The “precondition” function, pre similar to that from the partial-correctness case, is given in the template:

fun pre :: “acom ⇒ assn ⇒ assn” where

The recursive clauses for vc are essentially the ones from the partial-correctness case, except for the case of WHILE loops, where you need to take two further aspects into account:

• incorporate the measure annotation M in the generated conditions (hint: by contrast to the partial-correctness case, use pre c (λs′. I s′ ∧ M s′ < M s) s and vc c (λs′. I s′ ∧ M s′ < M s) instead of pre c I and vc c I);
• the above only if the WHILE is not a FOR loop—otherwise, M should be ignored.

fun vc :: “acom ⇒ assn ⇒ bool” where

Note that, unlike for partial correctness, here vc has type acom ⇒ assn ⇒ bool instead of acom ⇒ assn ⇒ assn. Here, vc c Q should play a similar role as ∀ s. vc c Q s from partial correctness.

Some tests for your definition of vc are given in the template.

3. Define a function that strips away annotations:

fun strip :: “acom ⇒ com” where

4. Prove the following facts about your operators (analogous to the partial-correctness case), culminating with soundness. For the theorem vc_sound, in the WHILE case, you will need to distinguish between FOR loops and non FOR loops, and provide a suitable measure in the case of the former. (Recall that the verification condition generator should ignore the measure annotation at FOR loops.)

lemma pre_mono: “∀ s. P s → P′ s ⇒ pre c P s ⇒ pre c P′ s”

lemma vc_mono: “∀ s. P s → P′ s ⇒ vc c P ⇒ vc c P′”

lemma vc_sound: “vc c Q ⇒ ⊢ t {pre c Q} strip c {Q}”

corollary vc_sound’: “vc c Q ∧ (∀ s. P s → pre c Q s) ⇒ ⊢ t {P} strip c {Q}”