Semantics of Programming Languages
Exercise Sheet 3

Exercise 3.1 Relational \texttt{aval}

Theory \texttt{AExp} defines an evaluation function \texttt{aval :: aexp \Rightarrow state \Rightarrow val} for arithmetic expressions. Define a corresponding evaluation relation \texttt{is_aval :: aexp \Rightarrow state \Rightarrow val \Rightarrow bool} as an inductive predicate:

\texttt{inductive is_aval :: "aexp \Rightarrow state \Rightarrow val \Rightarrow bool"}

Use the introduction rules \texttt{is_aval_intros} to prove this example lemma.

\texttt{lemma "is_aval (Plus (N 2) (Plus (V x) (N 3))) s (2 + (s x + 3))"}

Prove that the evaluation relation \texttt{is_aval} agrees with the evaluation function \texttt{aval}. Show implications in both directions, and then prove the if-and-only-if form.

\texttt{lemma aval1: "is_aval a s v \rightarrow aval a s = v"}
\texttt{lemma aval2: "aval a s = v \rightarrow is_aval a s v"}
\texttt{theorem "is_aval a s v \leftrightarrow aval a s = v"}

Exercise 3.2 Avoiding Stack Underflow

A \texttt{stack underflow} occurs when executing an instruction on a stack containing too few values – e.g., executing an \texttt{ADD} instruction on an stack of size less than two. A well-formed sequence of instructions (e.g., one generated by \texttt{comp}) should never cause a stack underflow.

In this exercise, you will define a semantics for the stack-machine that throws an exception if the program underflows the stack.

Modify the \texttt{exec1} and \texttt{exec -} functions, such that they return an option value, \texttt{None} indicating a stack-underflow.

\texttt{fun exec1 :: "instr \Rightarrow state \Rightarrow stack \Rightarrow stack option"}
\texttt{fun exec :: "instr list \Rightarrow state \Rightarrow stack \Rightarrow stack option"}

Now adjust the proof of theorem \texttt{exec_comp} to show that programs output by the compiler never underflow the stack:
Exercise 3.3 Boolean If expressions

We consider an alternative definition of boolean expressions, which feature a conditional construct:

datatype ifexp = Bc bool | If ifexp ifexp ifexp | Less' aexp aexp

1. Define a function ifval analogous to bval, which evaluates ifexp expressions.
2. Define a function translate, which translates ifexp to bexp. State and prove a lemma showing that the translation is correct.

Homework 3.1 Let expressions (1)

Submission until Tuesday, November 5, 2013, 10:00am.
Please include the string ,_[Semantics]_” into the subject-line of your submissions!

The following type adds a Let construct to arithmetic expressions:

datatype lexp = N val | V vname | Plus lexp lexp | Let vname lexp lexp

The new Let constructor acts like a local variable binding: When evaluating Let x e1 e2, we first evaluate e1, bind the resulting value to the variable x and then evaluate e2 in the new state.

Define a function lval, which evaluates lexp expressions. Note that you can use the notation f(x := v) to express function update. It is defined as follows:

\[f(a := b) = (\lambda x. \text{if } x = a \text{ then } b \text{ else } f x) \]

fun lval :: “lexp ⇒ state ⇒ val”

Define a function that transforms such an expression into an equivalent one that does not contain Let. Prove that your transformation is correct. Note: Do the transformation by inlining the bound variables.

fun inline :: “lexp ⇒ aexp”

value “inline (Let 'x' (Plus (N 1) (N 1)) (Plus (V 'x') (V 'x')))”

lemma val_inline: “aval (inline e) st = lval e st”

Define a function that eliminates occurrences of Let x e1 e2 that are never used, i.e., where x does not occur free in e2. An occurrence of a variable in an expression is called
free, if it is not in the body of a Let expression that binds the same variable. E.g., the variable x occurs free in $\text{Plus} \ (V \ x) \ (V \ x)$, but not in $\text{Let} \ x \ (N \ 0) \ (\text{Plus} \ (V \ x) \ (V \ x))$. Prove the correctness of your transformation.

fun elim :: “lexp ⇒ lexp”
lemma “lval (elim e) st = lval e st”

Some Hints:
• When different datatypes have a constructor with the same name, they can unambiguously be referred to using their qualified name, e.g., $aexp.\text{Plus}$ vs. $lexp.\text{Plus}$.
• When you feel that the proof should be trivial to finish, you can also try the sledgehammer command. It invokes an extensive proof search that includes more library lemmas.

Homework 3.2 Let expressions (II)

Submission until Tuesday, November 5, 2013, 10:00am. This homework is worth 5 bonus points.

When inlining let-expressions, the inlined expression may be exponentially larger than the original expression. Show that, for all n, there is an expression e of size at least n, such that its inlined version is exponentially larger.

Hints Define a function $\text{gen _ exp} :: \text{nat} ⇒ \text{lexp}$ that constructs a suitable expression for any n.

The size-function gives you the size of any datatype, including $aexp$ and $lexp$. Note that it is defined to be zero for non-recursive constructors. Other useful functions may be integer division ($a \div b$) and exponentiation $a ^ b$.

Part of this homework’s challenge is to come up with the correct theorems yourself. So make sure that the theorems you prove really state the intended proposition.