Exercise 7.1 Definite Initialization Analysis

In the lecture, you have seen a definite initialization analysis that was based on the
big-step semantics. Definite initialization analysis can also be based on a small-step
semantics. Furthermore, the ternary predicate D from the lecture can be split into two
parts: a function $AA :: com \Rightarrow \text{name set}$ ("assigned after") which collects the names of
all variables assigned by a command and a binary predicate $D :: \text{name set} \Rightarrow com \Rightarrow \text{bool}$
which checks that a command accesses only previously assigned variables. Conceptually,
the ternary predicate from the lecture (call it D_{lec}) and the two-step approach should
relate by the equivalence

$$ D V c \iff D_{lec} V c (V \cup AA c) $$

1. Download the theory `ex07_tmpl.thy` and study the already defined small-step
 semantics for definite analysis.

2. Define the function AA which computes the set of variables assigned after execution
 of a command. Furthermore, define the predicate D which checks if a command
 accesses only assigned variables, assuming the variables in the argument set are
 already assigned.

3. Prove progress and preservation of D with respect to the small-step semantics,
 and conclude soundness of D. You may use (and then need to prove) the lemmas
 D_{incr} and D_{mono}.

Homework 7.1 Erasing private parts

Submission until Tuesday, December 10, 2013, 10:00am.

Note: In this homework, you will do induction proofs over the big-step semantics. In
these proofs, the cases WhileFalse, IfTrue, and IfFalse are similar to the WhileTrue-case.
To save you from additional (repetitive) work, you may use `sorry` for the cases While-
False, IfTrue, and IfFalse.
However, if you cannot prove the WhileTrue case, try proving the other cases first, this
may get you some insight and partial score.
In this homework, you should define a function that erases confidential (“private”) parts of a command:

fun erase :: “level ⇒ com ⇒ com”

Function erase l should replace all assignments to variables with security level \(\geq l \) by SKIP. It should also erase certain IFs and WHILEs, depending on the security level of the boolean condition. Now show that \(c \) and \(\text{erase } l \ c \) behave the same on the variables up to level \(l \):

theorem

“\[(c, s) \Rightarrow s'; (\text{erase } l \ c, t) \Rightarrow t'; \ 0 \vdash c; \ s = t \ (< l) \]”
\[\Rightarrow s' = t' \ (< l) \]”

This lemma looks remarkably like the noninterference lemma in See_Typing (although \(\leq \) has been replaced by \(<\)). You may want to start with that proof and modify it where needed. A lot of local modifications will be necessary, but the structure should remain the same. You may also need one or two simple additional lemmas (for example \(\Rightarrow \text{aval } a \ s_1 = \text{aval } a \ s_2 \)), but nothing major.

In the theorem above we assumed that both \((c, s) \) and \((\text{erase } l \ c, t) \) terminate. How about the following two properties:

lemma “\[(c, s) \Rightarrow s'; \ 0 \vdash c; \ s = t \ (< l) \]”
\[\Rightarrow \exists t'. \ (\text{erase } l \ c, t) \Rightarrow t' \land s' = t' \ (< l) \]”

lemma “\[(\text{erase } l \ c, s) \Rightarrow s'; \ 0 \vdash c; \ s = t \ (< l) \]” \[\Rightarrow \exists t'. \ (c, t) \Rightarrow t' \]”

Give proofs or counterexamples.