Semantics of Programming Languages
Exercise Sheet 9

Exercise 9.1 Denotational Semantics

Define a denotational semantics for REPEAT-loops, and show its equivalence to the bigstep semantics.
Use the exercise template that we provide on the course web page.

Exercise 9.2 Hoare Logic

In this exercise, you shall prove correct some Hoare triples.
First, write a program that stores the maximum of the values of variables a and b in variable c.

definition MAX :: com where

For the next task, you will need the following lemmas. Hint: Sledgehammering may be a good idea.

lemma [simp]: “$(a::int)<b \implies \max a b = b$”

lemma [simp]: “~$(a::int)<b \implies \max a b = a$”

Show that MAX satisfies the following Hoare-triple:

lemma “$\vdash \{ \lambda s. \text{True} \} \text{MAX} \{ \lambda s. s "c" = \max (s "a") (s "b") \}”

Now define a program MUL that returns the product of x and y in variable z. You may assume that y is not negative.

definition MUL :: com where

Prove that MUL does the right thing.

lemma “$\vdash \{ \lambda s. 0 \leq s "y" \} \text{MUL} \{ \lambda s. s "z" = s "x" * s "y" \}”
Hints You may want to use the lemma `algebra_simps`, that contains some useful lemmas like distributivity.

Note that we use a backward assignment rule. This implies that the best way to do proofs is also backwards, i.e., on a semicolon $S_1; S_2$, you first continue the proof for S_2, thus instantiating the intermediate assertion, and then do the proof for S_1. However, the first premise of the `Seq`-rule is about S_1. Hence, you may want to use the `rotated`-attribute, that rotates the premises of a lemma:

```plaintext
lemmas Seq_bwd = Seq[rotated]
lemmas hoare_rule[intro?] = Seq_bwd Assign Assign'
```

Note that our specifications still have a problem, as programs are allowed to overwrite arbitrary variables.

For example, regard the following (wrong) implementation of `MAX`:

```plaintext
definition "MAX_wrong ≡ '"a''::=N 0;; '"b''::=N 0;; '"c''::=N 0"
```

Prove that `MAX_wrong` also satisfies the specification for `MAX`:

What we really want to specify is, that `MAX` computes the maximum of the values of a and b in the initial state. Moreover, we may require that a and b are not changed.

For this, we can use logical variables in the specification. Prove the following more accurate specification for `MAX`:

```plaintext
lemma ∀{as=s '"a'' ∧ b=s '"b''}
  MAX
  {λs '"c'' = max a b ∧ a = s '"a'' ∧ b = s '"b''}
```

The specification for `MUL` has the same problem. Fix it!
Homework 9 Be Original!

Submission until Tuesday, 14 January 2012, 10:00am.
Think up a nice formalization yourself!
Here are some ideas:

• Add some new language features to IMP, and redo some proofs (e.g., compiler, typing, Hoare-Logic).
• A control flow graph (CFG) is a graph where edges are labeled by either an assignment or a boolean expression. An assignment causes a state change and a boolean expression restricts which states can traverse this edge.
 Formalize an operational semantics of control flow graphs and prove some nice results, e.g., compiler (IMP → CFG or CFG → STACK), Floyd-style correctness proofs.
• Compile commands to a register machine, and show correctness.
• Prove correct some non-trivial program, e.g., square roots using the bisection method. Hint: A modular approach of writing and proving programs may help, e.g., you may try to reuse a program for multiplication and its correctness proof, rather than inlining the program and the proof.
• Write and prove correct a (simple) termination checker. E.g., while loops that only count down always terminate.

The following ideas require some amount of non-lecture related knowledge:
• Prove some interesting result about automata/formal language theory
• Formalize some results from mathematics

You should yourself set a time limit before starting your project. Also incomplete/unfinished formalizations are welcome and will be graded!
You are welcome to discuss your plans with one of the tutors before starting your project.