Exercise 4.1 Reflexive Transitive Closure

A binary relation is expressed by a predicate of type $R :: '\ s \Rightarrow \ s \Rightarrow bool$. Intuitively, $R s t$ represents a single step from state s to state t.

The reflexive, transitive closure R^\ast of R is the relation that contains a step $R^\ast s t$, iff R can step from s to t in any number of steps (including zero steps).

Formalize the reflexive transitive closure as inductive predicate:

\begin{verbatim}
inductive star :: "('a => 'a => bool) => 'a => 'a => bool"
\end{verbatim}

When doing so, you have the choice to append or prepend a step. In any case, the following two lemmas should hold for your definition:

- lemma star_prepend: "[r x y; star r y z] => star r x z"
- lemma star_append: "[star r x y; r y z] => star r x z"

Now, formalize the star predicate again, this time the other way round:

\begin{verbatim}
inductive star' :: "('a => 'a => bool) => 'a => 'a => bool"
\end{verbatim}

Prove the equivalence of your two formalizations

- lemma "star r x y = star' r x y"

Hint: The induction method expects the assumption about the inductive predicate to be first.

Exercise 4.2 Elements of a List

Give all your proofs in Isar, not apply style

Define a recursive function \textit{elems} returning the set of elements of a list:

\begin{verbatim}
fun elems :: "'a list => 'a set"
\end{verbatim}

To test your definition, prove:

- lemma "elems [1,2,3,(4::nat)] = \{1,2,3,4\}"

Now prove for each element \(x\) in a list \(xs\) that we can split \(xs\) in a prefix not containing \(x\), \(x\) itself and a rest:

lemma \(\forall x \in \text{elems} \; \forall xs. \; \exists ys \; \exists zs. \; xs = ys \; @ \; x \; \# \; zs \; \land \; x \; \notin \; \text{elems} \; ys\)

Exercise 4.3 Rule Inversion

Recall the evenness predicate \(ev\) from the lecture:

inductive \(ev :: \text{"nat \Rightarrow bool" where}\)

\(ev_0:: \text{"ev 0"} |\)

\(evSS:: \text{"ev n \Rightarrow ev (Suc (Suc n))"} \)

Prove the converse of rule \(evSS\) using rule inversion. Hint: There are two ways to proceed. First, you can write a structured Isar-style proof using the cases method:

lemma \(\text{"ev (Suc (Suc n)) \Rightarrow ev n"} \)

proof —

assume \(\text{"ev (Suc (Suc n))" } \text{then show } \text{"ev n"} \)

proof (cases)

...

qed

qed

Alternatively, you can write a more automated proof by using the **inductive_cases** command to generate elimination rules. These rules can then be used with “auto elim:”. (If given the [elim] attribute, auto will use them by default.)

inductive_cases \(evSS_elim:: \text{"ev (Suc (Suc n))"} \)

Next, prove that the natural number three \((\text{Suc (Suc (Suc 0)))}\) is not even. Hint: You may proceed either with a structured proof, or with an automatic one. An automatic proof may require additional elimination rules from **inductive_cases**.

lemma \(\text{"\neg ev (Suc (Suc (Suc 0)))"} \)

Homework 4.1 (Deterministic) labeled transition systems

Submission until Tuesday, November 11, 10:00am.

Give all your proofs in Isar, not apply style

A **labeled transition system** is a directed graph with edge labels. We represent it by a predicate that holds for the edges.

type_synonym \(\text{"('q,'l) \; lts = "'q \Rightarrow 'l \Rightarrow 'q \Rightarrow bool"} \)

I.e., for an LTS \(\delta\) over nodes of type \(\text{"'q}\) and labels of type \(\text{"'l}\), \(\delta\; q \; l \; q\) means that there is an edge from \(q\) to \(q\) labeled with \(l\).
A word from source node \(u \) to target node \(v \) is the sequence of edge labels one encounters when going from \(u \) to \(v \).

Define a predicate \(\text{word} \), such that \(\text{word} \ \delta \ u \ w \ v \) holds iff \(w \) is a word from \(u \) to \(v \).

inductive \(\text{word} :: \quad (\lts \to \q \to \q \to \bool) \) for \(\delta \)

A deterministic LTS has at most one transition for each node and label

definition \(\text{det} \ \delta \equiv \forall \ q \ a \ q1 \ q2. \ \delta \ q \ a \ q1 \land \delta \ q \ a \ q2 \rightarrow q1=q2 \)

Show: For a deterministic LTS, the same word from the same source node leads to at most one target node, i.e., the target node is determined by the source node and the path

lemma

assumes \(\text{det} \) : “\(\text{det} \ \delta \)”
shows “\(\text{word} \ \delta \ q \ w \ q' \implies \text{word} \ \delta \ q \ w \ q'' \implies q'=q'' \)”

Homework 4.2
Grammars

Submission until Tuesday, November 11, 10:00am.

Give all your proofs in Isar, not apply style

We define two symmetric grammars for all well balanced strings of \{a, b\}, defined as the type \(ab \):

datatype \(ab \) = \(a \mid b \)

Now we define the language of all balanced occurrences of \(a \) and \(b \) in two different ways and show that both definitions are equal.

\[
S \to aSbS|\epsilon \\
T \to TaTb|\epsilon
\]

inductive_set \(S :: \quad \text{“ab list set”} \) where
left: “\(w1 \in S \implies w2 \in S \implies [a] @@ w1 @@ [b] @@ w2 \in S \)”
nil: “\([] \in S \)”

inductive_set \(T :: \quad \text{“ab list set”} \) where
right: “\(w1 \in T \implies w2 \in T \implies w1 @@ [a] @@ w2 @@ [b] \in T \)”
nil: “\([] \in T \)”

Prove the equivalence \(T = S \).

Hint: You need to show that \(S \to SS \) and \(T \to TT \) are valid rules. The definitions of \(S \) and \(T \) show you how these are rules stated in Isabelle/HOL.

lemma \(S _imp _T \):
assumes \(w : "w \in S" \)
shows \("w \in T" \)

Prove this!

lemma \(T_{\text{imp}} S \):
assumes \(w : "w \in T" \)
shows \("w \in S" \)

Prove this!

With these theorems we finally show the equivalence of \(S \) and \(T \):

lemma \("S = T" \)
using \(S_{\text{imp}} T T_{\text{imp}} S \) by \textit{auto}