Semantics of Programming Languages
Exercise Sheet 6

Exercise 6.1 A different instruction set architecture

We consider a different instruction set which evaluates boolean expressions on the stack, similar to arithmetic expressions:

- The boolean value \textit{False} is represented by the number 0, the boolean value \textit{True} is represented by any number not equal to 0.
- For every boolean operation exists a corresponding instruction which, similar to arithmetic instructions, operates on values on top of the stack.
- The new instruction set introduces a conditional jump which pops the top-most element from the stack and jumps over a given amount of instructions, if the popped value corresponds to \textit{False}, and otherwise goes to the next instruction.

Modify the theory \textit{Compiler} by defining a suitable set of instructions, by adapting the execution model and the compiler and by updating the correctness proof.

Exercise 6.2 Deskip

Define a recursive function

\begin{verbatim}
fun deskip :: "com ⇒ com"
\end{verbatim}

that eliminates as many \textit{SKIP}s as possible from a command. For example:

\begin{verbatim}
deskip (SKIP;; WHILE b DO (x ::= a;; SKIP)) = WHILE b DO x ::= a
\end{verbatim}

Prove its correctness by induction on \(c\):

\begin{verbatim}
lemma "deskip c ∼ c"
\end{verbatim}

Remember lemma \textit{sim_while_cong} for the \textit{WHILE} case.
Homework 6.1 While Free Programs

Submission until Tuesday, November 25, 10:00am.

a) Show that while-free programs always terminate, i.e., show that for any while-free command and any state, the big-step semantics yields a result state.

b) Show that non-terminating programs contain a while loop, i.e., show that all commands, for which there is a state such that the big-step semantics yields no result, contain a while loop.

Homework 6.2 Absolute Adressing

Submission until Tuesday, November 25, 10:00am.

The current instruction set uses *relative addressing*, i.e., the jump-instructions contain an offset that is added to the program counter. An alternative is *absolute addressing*, where jump-instructions contain the absolute address of the jump target.

Write a semantics that interprets the 3 types of jump instructions with absolute addresses.

fun iexec_abs :: “instr ⇒ config ⇒ config”

definition exec1_abs :: “instr list ⇒ config ⇒ config ⇒ bool” (“(/ ⊢ a (→/ _))” [59,0,59] 60)

lemma exec1_absI [intro]:

“[c' = iexec_abs (P!!i) (i,s,stk); 0 ≤ i; i < size P] ⇒ P ⊢ a (i,s,stk) → c'”

abbreviation exec_abs :: “instr list ⇒ config ⇒ config ⇒ bool” (“(/ ⊢ a (→*/ _))” 50)

Write a function that converts a program from absolute to relative addressing:

cnv_to_rel :: instr list ⇒ instr list

Show that the semantics match wrt. your conversion.

P ⊢ a c →∗ c' ←→ cnv_to_rel P ⊢ c →∗ c'

Hints:

- First write a function that converts each instruction, depending on its address.

Then use the function index_map, that is defined below, to convert a program.

- Prove the theorem for a single step first.

fun index_map :: “(int ⇒ 'a ⇒ 'a) ⇒ int ⇒ 'a list ⇒ 'a list”

where

“index_map f i [] = []”

| “index_map f i (x#xs) = f i x # index_map f (i+1) xs”
Start with proving the following basic facts about `index_map`, which may be helpful for your main proof!

Lemma `index_map_len[simp]`: “size (index_map f i l) = size l”
— `index_map` preserves size of list

Lemma `index_map_idx[simp]`: “[0 ≤ i; i < size l]
⇒ index_map f k l !! i = f (i+k) (l!!i)”
— `index_map` commutes with list indexing
Homework 6.3 Control Flow Graphs

Submission until Tuesday, November 25, 2014, 10:00am. This homework is worth 5 bonus points.

From Homework 4.1:

type_synonym (′q,′l) lts = “′q ⇒ ′l ⇒ ′q ⇒ bool”
inductive word :: “(′q,′l) lts ⇒ ′q ⇒ ′l list ⇒ ′q ⇒ bool” for δ
where
 empty: “word δ q [] q”
| prepend: “[δ q l qh; word δ qh ls q’] ⇒ word δ q (l#ls) q’”

A control flow graph is a labeled transition system (cf. Homework 4.1), where the edges are labeled with actions:

datatype action =
 EAssign vname aexp — Assign variable
| ETest bexp — Only executable if expression is true
| ESkip

type_synonym ′q cfg = “(′q.action) lts”

Intuitively, the control flow graph is executed by following a path and applying the effects of the actions to the state.

Define the effect of an action to a state. Your function shall return None if the action is not executable, i.e., a test of an expression that evaluates to False:

fun eff :: “action ⇒ state ⇒ state” where
Lift your definition to paths. Again, only paths where all tests succeed shall yield a result ≠ None.

fun eff_list :: “action list ⇒ state ⇒ state” where

The control flow graph of a WHILE-Program can be defined over nodes that are commands. Complete the following definition. (Hint: Have a look at the small-step semantics first)

inductive cfg :: “com cfg” where
 cfg_assign: “cfg (n ::= e) (EAssign n e) (SKIP)”
| cfg_Seq2: “[cfg c1 e c1’] ⇒⇒ cfg (c1;;c2) e (c1’;;c2)”

Prove that the effects of paths in the CFG match the small-step semantics:

lemma eq_path: “(c,s)⇒⇒ (c’,s’) ←→ (∃ π. word cfg c π c’ ∧ eff_list π s = Some s’)”

Hint. Prove the lemma for a single step first.