Semantics of Programming Languages
Exercise Sheet 8

Exercise 8.1 Security type system: bottom-up with subsumption
Use the template file ex08 tmpl.thy.
Recall security type systems for information flow control from the lecture. Such a type systems can either be defined in a top-down or in a bottom-up manner. Independently of this choice, the type system may or may not contain a subsumption rule (also called anti-monotonicity in the lecture). The lecture discussed already all but one combination: a bottom-up type system with subsumption.

1. Define a bottom-up security type system for information flow control with subsumption rule.
2. Prove the equivalence of the newly introduced bottom-up type system with the bottom-up type system without subsumption rule from the lecture.

Exercise 8.2 Definite Initialization Analysis
Use the template file ex08 tmpl.thy.
In the lecture, you have seen a definite initialization analysis that was based on the big-step semantics. Definite initialization analysis can also be based on a small-step semantics. Furthermore, the ternary predicate \(D \) from the lecture can be split into two parts: a function \(AA : \text{com} \Rightarrow \text{name set} \) ("assigned after") which collects the names of all variables assigned by a command and a binary predicate \(D : \text{name set} \Rightarrow \text{com} \Rightarrow \text{bool} \) which checks that a command accesses only previously assigned variables. Conceptually, the ternary predicate from the lecture (call it \(D_{\text{lec}} \)) and the two-step approach should relate by the equivalence \(D V c \iff D_{\text{lec}} V c \ (V \cup AA c) \).

1. Study the already defined small-step semantics for definite analysis.
2. Define the function \(AA \) which computes the set of variables assigned after execution of a command. Furthermore, define the predicate \(D \) which checks if a command accesses only assigned variables, assuming the variables in the argument set are already assigned.
3. Prove progress and preservation of \(D \) with respect to the small-step semantics, and conclude soundness of \(D \). You may use (and then need to prove) the lemmas \(D_{\text{incr}} \) and \(D_{\text{mono}} \).
Homework 8.1 A Typed Language

Submission until Tuesday, December 9, 2014, 10:00am.
Use the template file hw08_tmp1.thy.

We unify boolean expressions $bexp$ and arithmetic expressions $aexp$ into one expressions language exp. We also define a datatype val to represent either integers or booleans. We then give a type system and small semantics, your task is to show preservation and progress of the type system, i.e. replace all oops by valid proofs.

Preparation 1: We define unified values and expressions:

```haskell
datatype val = Iv int | Bv bool

datatype exp =
  N int | V vname | Plus exp exp | Bc bool | Not exp | And exp exp | Less exp exp
```

Evaluation is now defined as inductive predicate only working when the types of the values are correct:

```haskell
inductive eval :: "exp ⇒ state ⇒ val ⇒ bool" where
  "eval (N i) s (Iv i)" |
  "eval (V x) s (s x)" |
  "eval a1 s (Iv i1) ⇒ eval a2 s (Iv i2) ⇒ eval (Plus a1 a2) s (Iv (i1 + i2))" |
  "eval (Bc v) s (Bv v)" |
  "eval b s (Bv bv) ⇒ eval (Not b) s (Bv (¬ bv))" |
  "eval b1 s (Bv bv1) ⇒ eval b2 s (Bv bv2) ⇒ eval (And b1 b2) s (Bv (bv1 ∧ bv2))" |
  "eval a1 s (Iv i1) ⇒ eval a2 s (Iv i2) ⇒ eval (Less a1 a2) s (Bv (i1 < i2))"
```

Preparation 2: The small-step semantics are as before, we just replaced $aval$ and $bval$ with $eval$.

```haskell
inductive small_step :: "(com × state) ⇒ (com × state) ⇒ bool" (infix "⇒") where
  Assign: "eval a s v ⇒ (x ::= a, s) ⇒ (SKIP, s(x := v))" |
  IfTrue: "eval b s (Bv True) ⇒ (IF b THEN c1 ELSE c2, s) ⇒ (c1, s)" |
  IfFalse: "eval b s (Bv False) ⇒ (IF b THEN c1 ELSE c2, s) ⇒ (c2, s)"

... 
```

Preparation 3: We introduce the type system.

```haskell
datatype ty = Ity | Bty

type synonym tyenv = "vname ⇒ ty"

inductive etyping :: "tyenv ⇒ exp ⇒ ty ⇒ bool" 
  ("Γ ⊢ tyenv ⇒ exp ⇒ ty ⇒ bool") where
  "Γ ⊢ N i : Ity" |
  "Γ ⊢ V x : Γ x" |
  "Γ ⊢ a1 : Ity ⇒ Γ ⊢ a2 : Ity ⇒ Γ ⊢ Plus a1 a2 : Ity"
```

2
“Γ ├ Be v : Bty” |
“Γ ├ b : Bty ⇒ Γ ├ Not b : Bty” |
“Γ ├ b₁ : Bty ⇒ Γ ├ b₂ : Bty ⇒ Γ ├ And b₁ b₂ : Bty” |
“Γ ├ a₁ : Ity ⇒ Γ ├ a₂ : Ity ⇒ Γ ├ Less a₁ a₂ : Bty” |

inductive ctyping :: “tyenv ⇒ com ⇒ bool” (infix “├” 50) where |
“Γ ├ SKIP” |
“Γ ├ a : Γ x ⇒ Γ ├ x ::= a” |
“Γ ├ b₁ ⇒ Γ ├ c₁ ⇒ Γ ├ c₂ ⇒ IF b THEN c₁ ELSE c₂” |
“Γ ├ b : Bty ⇒ Γ ├ c ⇒ WHILE b DO c” |

We define a state typing styping to describe the type context of a state.

fun type :: “val ⇒ ty” where |
“type (If v i) = Ity” |
“type (Be v) = Bty” |

definition styping :: “tyenv ⇒ state ⇒ bool” (infix “├” 50) where |
“Γ ├ s ←→ (∀ x. type (s x) = Γ x)” |

Task 1: Show preservation and progress on expressions:

lemma epreservation: “Γ ├ a : τ ⇒ eval a s v ⇒ Γ ├ s ⇒ type v = τ” |

lemma eprogress: “Γ ├ a : τ ⇒ Γ ├ s ⇒ Θ v. eval a s v” |

Task 2: Show progress and preservation on commands:

theorem progress: “Γ ├ c ⇒ Γ ├ s ⇒ c ≠ SKIP ⇒ ∃cs’. (c,s) → cs’” |

theorem ctyping_preservation: “(c,s) → (c’s) ⇒ Γ ├ c ⇒ Γ ├ s ⇒ Γ ├ s’” |

theorem ctyping_preservation: “(c,s) → (c’s) ⇒ Γ ├ c ⇒ Γ ├ c’” |

theorem type_sound: |
“(c,s) →* (c’s) ⇒ Γ ├ c ⇒ Γ ├ s ⇒ c’ ≠ SKIP ⇒ ∃cs”. (c’,s’) → cs’” |

Homework 8.2 Terminating While Loops

Submission until Tuesday, December 9, 2014, 10:00am. The objective of this homework is to identify while loops of the form `while x<n do c`, such that `x` is a variable, `n` is a constant, and the execution of command `c` is guaranteed to increment `x`.

Your first task is to write a function that checks whether a command is guaranteed to increment a variable. Note: This predicate can only be an approximation. You are not required to use information of conditions, nor to track other variables than the regarded one.

Hint: An auxiliary function that checks whether a command is guaranteed to preserve the value of a variable may be helpful:

fun invar :: “vname ⇒ com ⇒ bool” |
— True if command does not change value of variable |

fun incr :: “vname ⇒ com ⇒ bool” |
— True if command increments value of variable
Some tests for your approximation: These should all evaluate to True

abbreviation "x ≡ ""x"" abbreviation "y ≡ ""y"
abbreviation "L ≡ (WHILE (Less (V y) (N 2)) DO y ::= Plus (V y) (N 1))"
abbreviation "I n ≡ x ::= Plus (V x) (N n)"
value "incr x (I 1; I 2)" value "incr x (I 1; L)"
value "incr x (L; I 1)" value "incr x (IF (Less (V y) (N 1)) THEN I 1 ELSE I 2)"

You may return False on the following

value "incr x (I −1; I 2)" value "incr x (x:= V x; I 1)"

Prove that your approximation is correct

lemma incr: "(c,s) ⇒ t ⇒ incr x c ⇒ s x < t x"

Use your approximation to write a termination checker, that accepts programs where all the while-loops are of the form described above. You may formulate your termination checker as function or as inductive predicate. Both has its advantages and disadvantages:

function It is hard to forget some case, but you need to use the induction rule generated by the function, which does not have nice case names.

inductive The induction rule has nice case names, however, it is easy to forget some cases, and define a predicate that excludes too many terminating programs.

inductive "term": "com ⇒ bool" where

Prove that your termination checker only accepts terminating programs. Hint: The following induction rule may be helpful:

lemma int_less_induct:
assumes "∀i. i ≥ k ⇒ P i" and "∀i. i < k ⇒ ∀j. j < i ⇒ P j ⇒ P i"
shows "P(i::int)" — Proof provided in auxiliary file

Then prove the crucial auxiliary lemma, namely that whenever c always terminates and increments x, then also the while-loop while (x<k) c always terminates. You may use int_less_induct for an inductive argument over the difference of x and k.

lemma term,w: assumes "∀s. EX t. (c,s) ⇒ t" "incr x c"
shows "EX t. (WHILE Less (V x) (N k) DO c, s) ⇒ t"
proof(induction "s x" arbitrary: s rule: int_less_induct[of k])

Finally, prove:

theorem "term c ⇒ EX t. (c,s) ⇒ t"