Semantics of Programming Languages
Exercise Sheet 7

Exercise 7.1 Deskip

Define a recursive function

\[
\text{fun deskip :: "com ⇒ com"}
\]

that eliminates as many SKIPs as possible from a command. For example:

\[
deskip (\text{SKIP};; \text{WHILE b DO (} x ::= a;; \text{SKIP})) = \text{WHILE b DO } x ::= a
\]

Prove its correctness by induction on \(c \):

\[
\text{lemma "deskip } c \sim c"
\]

Exercise 7.2 Small step pre-order

We define a pre-order \(\preceq \) on programs that uses the small-step semantics. The relation \(p \preceq p' \) shall hold if \(p' \) computes for any input the same output as \(p \), and in at most the same number of steps.

The following relation is the \(n \)-steps reduction relation:

\[
\text{inductive } nsteps :: "com * state ⇒ nat ⇒ com * state ⇒ bool"
\]

\[
("\rightarrow\) " [60,1000,60]999)
\]

where

\[
\text{zero_step: "} cs \rightarrow \hat{0} cs"
\]

\[
\text{one_step: "} cs \rightarrow cs' \Rightarrow cs' \rightarrow \hat{n} cs'' \Rightarrow cs \rightarrow \hat{(Suc n)} cs''"
\]

Prove the following lemmas:

\[
\text{lemma small_steps_n: "} cs \rightarrow* cs' \Rightarrow (\exists n. cs \rightarrow \hat{n} cs')"
\]

\[
\text{lemma nsmall_steps: "} cs \rightarrow \hat{n} cs' \Rightarrow cs \rightarrow* cs''"
\]

\[
\text{lemma nsteps_trans: "} cs \rightarrow \hat{n1} cs' \Rightarrow cs' \rightarrow \hat{n2} cs'' \Rightarrow cs \rightarrow \hat{(n1+n2)} cs''"
\]

The pre-order relation is defined as follows:

\[
\text{definition } small_step_pre :: "com ⇒ com ⇒ bool" (\textbf{infix "≤" 50}) \textbf{where}
\]
Prove the following lemma:

Lemma small_eqv_implies_big_eqv:

Assumes “$c \preceq c'$” “$c' \preceq c$”

Shows “$c \sim c'$”

Exercise 7.3 Compiler optimization

A common programming idiom is $IF \ b \ THEN \ c$, i.e., the else-branch consists of a single $SKIP$ command.

1. Look at how the program $IF \ Less \ (V \ "x") \ (N \ 5) \ THEN \ "y" ::= N \ 3 \ ELSE \ SKIP$ is compiled by $ccomp$ and identify a possible compiler optimization.
2. Implement an optimized compiler (by modifying $ccomp$) which reduces the number of instructions for programs of the form $IF \ b \ THEN \ c$.
3. Extend the proof of $comp_bigstep$ to your modified compiler.

Homework 7.1 Compiling REPEAT

Submission until Tuesday, December 2, 10:00am.

We extend com with a $REPEAT \ c \ UNTIL \ b$ statement, adding the following rules to our big-step semantics:

- **RepeatTrue:** $\llbracket (c, s_1) \Rightarrow s_2; \ bval \ b \ s_2 \rrbracket \Longrightarrow (REPEAT \ c \ UNTIL \ b, s_1) \Rightarrow s_2$
- **RepeatFalse:** $\llbracket (c, s_1) \Rightarrow s_2; \ \neg \ bval \ b \ s_2; \ (REPEAT \ c \ UNTIL \ b, s_2) \Rightarrow s_3 \rrbracket \Longrightarrow (REPEAT \ c \ UNTIL \ b, s_1) \Rightarrow s_3$

Building on this, extend the compiler $ccomp$ and its correctness theorem $ccomp_bigstep$ to $REPEAT$ loops. **Hint:** the recursion pattern of the big-step semantics and the compiler for $REPEAT$ should match.

Download the files $Repeat_Big_Step.thy$ and $Repeat_Compiler_Template.thy$. Finish the definition of $ccomp$ and the proof of $ccomp_bigstep$ in $Repeat_Compiler_Template.thy$, and submit this theory using as filename the schema $FirstnameLastname2.thy$.

Homework 7.2 Commuting sequences of commands

Submission until Tuesday, December 13, 10:00am.

Write a function that collects all variables that occur in a command. (Hint: You need to write such functions also for boolean and arithmetic expressions)

fun vars :: “$\text{com} \Rightarrow v\text{name set}$” **where**
Then show the following two lemmas:

Lemma aval_equiv:

\[(c, s) \Rightarrow t \Rightarrow \text{vars}_a \cap \text{vars}_c = \{\} \Rightarrow \text{aval}_a t = \text{aval}_a s\]

Lemma bval_equiv:

\[(c, s) \Rightarrow t \Rightarrow \text{vars}_b \cap \text{vars}_c = \{\} \Rightarrow \text{bval}_b t = \text{bval}_b s\]

Finally prove that a sequence of commands can be commuted if the commands do not share any common variables:

Lemma Seq_commute:

assumes “\(\text{vars}_c1 \cap \text{vars}_c2 = \{\}\)"

shows “\(c1;;c2 \sim c2;;c1\)”

oops

One possible way to get there, is to prove the following auxiliary lemma first:

Lemma Seq_commute’:

assumes “\((c1, s) \Rightarrow s’\) “\((c2, s’) \Rightarrow t\)” “\(\text{vars}_c1 \cap \text{vars}_c2 = \{\}\)"

shows “\((c2;;c1, s) \Rightarrow t\)”

You only need to do the cases for while-loops and assignment. The latter may necessitate another helper lemma.

Lemma Seq_commute:

assumes “\(\text{vars}_c1 \cap \text{vars}_c2 = \{\}\)"

shows “\(c1;;c2 \sim c2;;c1\)”

Homework 7.3 Algebra of Commands

Submission until Tuesday, December 13, 10:00am.

We define an extension of the language with parallel composition (\(\parallel\)) for which we consider the small-step equivalence.

Your task will be to prove various algebraic laws for the small-step equivalence. The most helpful methods will be number induction and/or pair-based rule induction over the \(n\text{steps}\) relation, using \(n\text{steps}_\text{induct}\) (provided below).

Datatype

\[\text{com} =\]

| — sequential part as before — |
| \(\text{Par com com}\) (infix “\(\parallel\)” 59) |

Inductive

\[\text{small_step :: “com \ast state \Rightarrow com \ast state \Rightarrow bool” (infix “\(\rightarrow\)” 55)}\]

Where

| — sequential part as before — |
| \(\text{ParL: “}(c1, s) \Rightarrow (c1’, s’) \Rightarrow (c1 \parallel c2, s) \Rightarrow (c1’ \parallel c2, s’)”}\ |
| \(\text{ParLSkip: “}(\text{SKIP} \parallel c, s) \Rightarrow (c, s)”}\ |
| \(\text{ParR: “}(c2, s) \Rightarrow (c2’, s’) \Rightarrow (c1 \parallel c2, s) \Rightarrow (c1 \parallel c2’, s’)”}\ |
ParRSkip: “(c || SKIP, s) → (c, s)”

lemmas small_step_induct = small_step.induct[split_format(complete)]

inductive

nsteps :: “com * state ⇒ nat ⇒ com * state ⇒ bool”

(“_ → _” [60,1000,60,999])

where

zero_steps[simp,intro]: “cs → ˆ0 cs” |

one_step[intro]: “cs → cs’ ⇒ cs’ → ˆn cs’’ ⇒ cs → ˆ(Suc n) cs’’”

lemmas nsteps_induct = nsteps.induct[split_format(complete)]

definition

small_step.pre :: “com ⇒ com ⇒ bool” (infix “≤” 50) where

“c ≤ c’ ≡ (∀ s t n. (c, s) → ˆn (SKIP, t) → (3 n’ ≥ n. (c’, s) → ˆn’ (SKIP, t)))”

Based on the pre-order on programs, define an equivalence relation ≈ on programs.

Now prove commutativity and associativity of ||. You are free to do either automatic or Isar proofs.

lemma Par_commute: “c || d ≈ d || c”

lemma Par_assoc: “(c || d) || e ≈ c || (d || e)”