Semantics of Programming Languages
Exercise Sheet 11

Exercise 11.1 Hoare Logic

In this exercise, you shall prove correct some Hoare triples.

First, write a program that stores the maximum of the values of variables a and b in variable c.

definition $\text{MAX} :: \text{com where}$

For the next task, you will need the following lemmas. Hint: Sledgehammering may be a good idea.

lemma [simp]: "$(a::\text{int}) < b =\Rightarrow \text{max} a b = b$

lemma [simp]: "$\neg(a::\text{int}) < b =\Rightarrow \text{max} a b = a$

by auto

Show that MAX satisfies the following Hoare-triple:

lemma $\vdash \{λs. \text{True}\} \text{MAX} \{λs. s "c" = \text{max} (s "a") (s "b")\}$

Now define a program MUL that returns the product of x and y in variable z. You may assume that y is not negative.

definition $\text{MUL} :: \text{com where}$

Prove that MUL does the right thing.

lemma $\vdash \{λs. 0 \leq s "y"\} \text{MUL} \{λs. s "z" = s "x" * s "y"\}$

Hints You may want to use the lemma algebra_simpls, that contains some useful lemmas like distributivity.

Note that we use a backward assignment rule. This implies that the best way to do proofs is also backwards, i.e., on a semicolon $c_1; c_2$, you first continue the proof for c_2, thus instantiating the intermediate assertion, and then do the proof for c_1. However, the first premise of the Seq-rule is about c_1. Hence, you may want to use the rotated-attribute, that rotates the premises of a lemma:

lemmas $\text{Seq_bwd} = \text{Seq}[\text{rotated}]$
lemmas hoare_rule[intro?] = Seq_bwd Assign Assign' If

Note that our specifications still have a problem, as programs are allowed to overwrite arbitrary variables.
For example, regard the following (wrong) implementation of \(\text{MAX} \):

\[
\begin{aligned}
\text{definition} \quad \text{MAX}_{\text{wrong}} = ("a" := N 0;;"b" := N 0;;"c" := N 0)
\end{aligned}
\]

Prove that \(\text{MAX}_{\text{wrong}} \) also satisfies the specification for \(\text{MAX} \):

What we really want to specify is, that \(\text{MAX} \) computes the maximum of the values of \(a \) and \(b \) in the initial state. Moreover, we may require that \(a \) and \(b \) are not changed.
For this, we can use logical variables in the specification. Prove the following more accurate specification for \(\text{MAX} \):

\[
\begin{aligned}
\text{lemma} \quad \vdash \{ \lambda s. a = s''a'' \land b = s''b'' \} \quad \text{MAX} \quad \{ \lambda s. s''c'' = \max a b \land a = s''a'' \land b = s''b'' \}
\end{aligned}
\]

The specification for \(\text{MUL} \) has the same problem. Fix it!

Exercise 11.2 Forward Assignment Rule

Think up and prove a forward assignment rule, i.e., a rule of the form \(\vdash \{ P \} x := a \{ \ldots \} \), where \(\ldots \) is some suitable postcondition. Hint: To prove this rule, use the completeness property, and prove the rule semantically.

lemmas fwd.Assign' = weaken_post[OF fwd.Assign]

Redo the proofs for \(\text{MAX} \) and \(\text{MUL} \) from the previous exercise, this time using your forward assignment rule.

\[
\begin{aligned}
\text{lemma} \quad \vdash \{ \lambda s. \text{True} \} \text{MAX} \quad \{ \lambda s. s''c'' = \max (s''a'') (s''b'') \}
\end{aligned}
\]

\[
\begin{aligned}
\text{lemma} \quad \vdash \{ \lambda s. 0 \leq s''y'' \} \text{MUL} \quad \{ \lambda s. s''z'' = s''x'' \ast s''y'' \}
\end{aligned}
\]

Homework 11.1 Hoare Logic OR

Submission until Tuesday, January 24, 2017, 10:00am.

Extend IMP with a new command \(c_1 \text{ OR } c_2 \) that is a nondeterministic choice: it may execute either \(c_1 \) or \(c_2 \). Add the constructor

\[
\text{Or com com \quad ("_ OR/ _" [60, 61] 60)}
\]
to datatype \textit{com} in theory \textit{Com}, adjust the definition of the big-step semantics in theory \textit{Big Step}, add a rule for OR to the Hoare logic in theory \textit{Hoare}, and adjust the soundness and completeness proofs in theory \textit{Hoare Complete}.

All these changes should be quite minimal and very local if you have got the definitions right.

\textbf{Homework 11.2} Fixed point reasoning

\textit{Submission until Tuesday, January 24, 2017, 10:00am.}

In the lecture, you have seen the Knaster-Tarski least fixed point theorem. The relevant constant is \texttt{lfp} :: (′\texttt{a} ⇒ ′\texttt{a}) ⇒ ′\texttt{a}, which assumes a complete lattice order \(≤\) on ′\texttt{a} and returns, for each monotonic operator \texttt{f} :: ′\texttt{a} ⇒ ′\texttt{a}, its least fixed point \texttt{lfp f}.

In the lectures as well as in this exercise, one only deals with the case where ′\texttt{a} is ′\texttt{b set} (the type of sets over an arbitrary type ′\texttt{b}) and \(\leq\) is \(\subseteq\) (set inclusion). In this exercise, you will prove a different kind of fixed point theorem. It says that if there are two injective functions, one from ′\texttt{a} to ′\texttt{b}, and one the other way round, then there also exists an bijection between ′\texttt{a} and ′\texttt{b}:

\begin{verbatim}
theorem
 assumes “inj (f :: ′a ⇒ ′b)” and “inj (g :: ′b ⇒ ′a)”
 shows “∃ h :: ′a ⇒ ′b. inj h ∧ surj h”

This is a fixed point theorem because we will use a least fixed point for the construction of \textit{h}. Use the provided template and follow the proof outline below to finish the proof.

theorem
 assumes “inj (f :: ′a ⇒ ′b)” and “inj (g :: ′b ⇒ ′a)”
 shows “∃ h :: ′a ⇒ ′b. inj h ∧ surj h”

proof
 def \texttt{S} ≡ “lfp (λX. − (g ′ (− (f ′ X))))”
 let \texttt{?g}′ = “inv g”
 def \texttt{h} ≡ “λz. if z ∈ S then f z else ??g′ z”

 have “S = − (g ′ (− (f ′ S)))”
 have *: “??g′ (− S) = − (f ′ S)”

 show “inj h ∧ surj h”
 proof
 from * show “surj h”
 have “inj_on f S”
 moreover have “inj_on ??g′ (− S)”
 moreover { fix a b
 assume “a ∈ S” “b ∈ − S” and eq: “f a = ??g′ b”
 have False }

\end{verbatim}
ultimately show \textit{“inj } h\textit{”}

qed

ded