Before beginning to solve the exercises, open a new theory file named Ex01.thy and add the following three lines at the beginning of this file.

```
theory Ex01
imports Main
begin
```

Exercise 1.1 Calculating with natural numbers

Use the `value` command to turn Isabelle into a fancy calculator and evaluate the following natural number expressions:

- \(2 + (2::nat)\)
- \((2::nat) \times (5 + 3)\)
- \((3::nat) \times 4 - 2 \times (7 + 1)\)

Can you explain the last result?

Exercise 1.2 Natural number laws

Formulate and prove the well-known laws of commutativity and associativity for addition of natural numbers.

Exercise 1.3 Counting elements of a list

Define a function which counts the number of occurrences of a particular element in a list.

```
fun count :: "'a list ⇒ 'a ⇒ nat"
```

Test your definition of `count` on some examples and prove that the results are indeed correct.

Prove the following inequality (and additional lemmas if necessary) about the relation between `count` and `length`, the function returning the length of a list.

```
theorem "count xs x ≤ length xs"
```
Exercise 1.4 Adding elements to the end of a list

Recall the definition of lists from the lecture. Define a function \textit{snoc} that appends an element at the right end of a list. Do not use the existing append operator @ for lists.

\textbf{fun} \textit{snoc} :: “′a list ⇒ ′a ⇒ ′a list”

Convince yourself on some test cases that your definition of \textit{snoc} behaves as expected, for example run:

\textbf{value} “\textit{snoc} [] c”

Also prove that your test cases are indeed correct, for instance show:

\textbf{lemma} “\textit{snoc} [] c = [c]”

Next define a function \textit{reverse} that reverses the order of elements in a list. (Do not use the existing function \textit{rev} from the library.) Hint: Define the reverse of \(x \neq xs \) using the \textit{snoc} function.

\textbf{fun} \textit{reverse} :: “′a list ⇒ ′a list”

Demonstrate that your definition is correct by running some test cases, and proving that those test cases are correct. For example:

\textbf{value} “\textit{reverse} [a, b, c]”
\textbf{lemma} “\textit{reverse} [a, b, c] = [c, b, a]”

Prove the following theorem. Hint: You need to find an additional lemma relating \textit{reverse} and \textit{snoc} to prove it.

\textbf{theorem} “\textit{reverse} (\textit{reverse} xs) = xs”

Homework 1.1 More Finger Exercise with Lists

\textit{Submission until Tuesday, October 23, 10:00am.}

\textbf{Submission Instructions}

Submissions are handled via \url{https://competition.isabelle.systems/}.

- Register an account in the system and send the tutor an e-mail with your username.
- Select the competition “Semantics” and submit your solution following the instructions on the website.
- The system will check that your solution can be loaded in Isabelle2018 without any errors and reports how many of the main theorems you were able to prove.
- You can upload multiple times; the last upload before the deadline is the one that will be graded.
• If you have any problems uploading, or if the submission seems to be rejected for reasons you cannot understand, please contact the tutor.

General hints:

• If you cannot prove a lemma, that you need for a subsequent proof, assume this lemma by using sorry.

• Define the functions as simply as possible. In particular, do not try to make them tail recursive by introducing extra accumulator parameters — this will complicate the proofs!

• All proofs should be straightforward, and take only a few lines.

Define a function fold_right that iteratively applies a function to the elements of a list. More precisely fold_right \(f \ [x_1, x_2, \ldots, x_n] \ a \) should compute \(f x_1 (f x_2 (\ldots (f x_n a))) \). The following evaluate to true, for instance:

\[\text{value} \quad \text{"fold_right (+) [1,2,3] (4 :: nat) = 10"} \]
\[\text{value} \quad \text{"fold_right (#) [a,b,c] [] = [a,b,c]"} \]

Prove that fold_right applied to the result of map can be contracted into a single fold_right:

\[\text{lemma} \quad \text{"fold_right f (map g xs) a = fold_right (f o g) xs a"} \]

Here \(o \) is the regular composition operator on functions, i.e. \(f o g = (\lambda x. f (g x)) \).

Prove the following lemma on fold_right and append:

\[\text{lemma} \quad \text{"fold_right f (xs @ ys) a = fold_right f xs (fold_right f ys a)"} \]

For the remainder of the homework we will consider the special case where \(f \) is the addition operation on natural numbers. Prove that sums over natural numbers can be “pulled apart”:

\[\text{lemma} \quad \text{"fold_right (+) (xs @ ys) (0 :: nat) = fold_right (+) xs 0 + fold_right (+) ys 0"} \]

The notation \((+) \) is just a shorthand for \(\lambda x y. x + y \).

Finally prove that calculating the sum from the right and from the left yields the same result:

\[\text{lemma} \quad \text{"fold_right (+) (reverse xs) (x :: nat) = fold_right (+) xs x"} \]

You may need a lemma about snoc and fold_right.