Exercise Sheet 2

This exercise sheet depends on definitions from the files AExp.thy and BExp.thy, which may be imported as follows:

theory ex02 imports “HOL−IMP.AExp” “HOL−IMP.BExp” begin

Exercise 2.1 Induction

Define a function deduplicate that removes duplicate occurrences of subsequent elements from a list.

fun deduplicate :: “′a list ⇒ ’a list” where

The following should evaluate to True, for instance:

value “deduplicate [1,1,2,3,2,2,1::nat] = [1,2,3,2,1]”

Prove that a deduplicated list has at most the length of the original list:

lemma “length (deduplicate xs) ≤ length xs”

Exercise 2.2 Substitution Lemma

A syntactic substitution replaces a variable by an expression.

Define a function subst :: vname ⇒ aexp ⇒ aexp ⇒ aexp that performs a syntactic substitution, i.e., subst x a’ a shall be the expression a where every occurrence of variable x has been replaced by expression a’.

Instead of syntactically replacing a variable x by an expression a’, we can also change the state s by replacing the value of x by the value of a’ under s. This is called semantic substitution.

The substitution lemma states that semantic and syntactic substitution are compatible. Prove the substitution lemma:

lemma subst lemma: “aval (subst x a’ a) s = aval a (s(x:=aval a’ s))”

Note: The expression s(x:=v) updates a function at point x. It is defined as:

\(f(a := b) = (\lambda x. \text{if } x = a \text{ then } b \text{ else } f x) \)
Compositionality means that one can replace equal expressions by equal expressions. Use the substitution lemma to prove compositionality of arithmetic expressions:

Lemma comp: \[\text{aval} a1 s = \text{aval} a2 s \implies \text{aval} (\text{subst} x a1 a) s = \text{aval} (\text{subst} x a2 a) s \]

Exercise 2.3 Arithmetic Expressions With Side-Effects

We want to extend arithmetic expressions by the postfix increment operation \(x++ \), as known from Java or C++.

The increment can only be applied to variables. The problem is, that it changes the state, and the evaluation of the rest of the term depends on the changed state. We assume left to right evaluation order here.

Define the datatype of extended arithmetic expressions. Hint: If you do not want to hide the standard constructor names from IMP, add a tick (\('\)) to them, e.g., \(V'x \).

The semantics of extended arithmetic expressions has the type \(\text{aval}' : \text{aexp}' \Rightarrow \text{state} \Rightarrow \text{val} \times \text{state} \), i.e., it takes an expression and a state, and returns a value and a new state. Define the function \(\text{aval}' \).

Test your function for some terms. Is the output as expected? Note: \(<>\) is an abbreviation for the state that assigns every variable to zero:

\[<> \equiv \lambda x . 0 \]

Value "\(<>(x:=0)""
Value "\(<>(\text{Plus}' (PI' "x'') (V' "x'')) <<-""
Value "\(<>(\text{Plus}' (\text{Plus}' (PI' "x'') (PI' "x'')) (PI' "x'')) <<-""

Is the plus-operation still commutative? Prove or disprove!

Show that the valuation of a variable cannot decrease during evaluation of an expression:

Lemma aval',inc:

\[\text{aval'} a <> = (v, s') \implies 0 \leq s' x \]

Hint: If \text{auto} on its own leaves you with an if in the assumptions or with a case-statement, you should modify it like this: (\text{auto split: if splits prod splits}).

Exercise 2.4 Variables of Expression (Time Permitting)

Define a function that returns the set of variables occurring in an arithmetic expression.

Fun vars :: "aexp \Rightarrow vname set" where

Show that arithmetic expressions do not depend on variables that they don’t contain.

Lemma ndep: \[x \notin \text{vars} e \implies \text{aval} e (s(x:=v)) = \text{aval} e s \]
Homework 2.1 Run-Length Encoding

Submission until Monday, November 4, 10:00am.

Do not forget to hand in your homework in the submission system! Note that the percentage displayed in the system is just a very rough indication of the score you will get and need not correspond to the actual score you will receive during grading.

We want to encode a list of integers as follows: All consecutive repetitions of an element are replaced by a pair that has 1) the element and 2) the number of repetitions. For example:

enc \[1,3,3,8\] = \[(1,1),(3,2),(8,1)\]

enc \[3,4,5\] = \[(3,1),(4,1),(5,1)\]

Background: This algorithm may be used in lossless data compression, when it is expected that data was created by modifying a fixed background, e.g. in palette-based computer images.

Define a function to encode a list with run-length encoding.

fun rlenc :: “‘a ⇒ nat ⇒ ‘a list ⇒ (‘a × nat) list” where

The first argument is meant to keep track of the value that was last seen, and the second argument is meant to specify the number of times the last element was seen. Hint: in Isabelle/HOL there is the function replicate that takes a natural number \(n\) and an object \(a\), and returns a list of length \(n\), whose members are all \(a\).

value “replicate (3::nat) (1::nat) = [1,1,1]”

Test cases:

theorem test1: “rlenc 0 0 [(1,3,3,8) :: int list] = [(0,0),(1,1),(3,2),(8,1)]”
by eval

theorem test2: “rlenc 1 0 [(3,4,5) :: int list] = [(1,0),(3,1),(4,1),(5,1)]”
by eval

Define the decoder. It takes a list that is encoded by rlenc.

fun rldec :: “(‘a × nat) list ⇒ ‘a list” where

Show that encoding and then decoding yields the same list. Hint: You will need a lemma which needs generalization. Moreover, you will need to use the lemma replicate_append_same, if you used replicate in defining rlenc.

theorem enc_dec: “rldec (rlenc a 0 l) = l”
Homework 2.2 Multiplication & Distributivity

Submission until Monday, Nov 4, 10:00am.

Do not forget to hand in your homework in the submission system! Note that the percentage displayed in the system is just a very rough indication of the score you will get and need not correspond to the actual score you will receive during grading.

In this exercise we add our language of arithmetic expressions with multiplication of constants and expressions.

We say that an arithmetic expression is normalized (with respect to distributivity) if it is an arithmetic expression where constants are only multiplied to variables. For example: \(\text{Mult } 3 \ \text{(} V \ "x" \text{)} \) is normalized. The following examples are not normalized: \(\text{Mult } 5 \ (N 6) \), \(\text{Mult } 5 \ (\text{Mult } 6 \ a) \), or \(\text{Mult } 5 \ (\text{Plus } a \ b) \).

For the following exercise we need to add the algebra_simps theorem collection to the simplifier:

lemmas [simp] = algebra_simps

We modify the \texttt{aexp} datatype by adding a syntactic construct \texttt{Mult} for multiplication with constants:

\begin{verbatim}
datatype aexp = N int | V vname | Plus aexp aexp | Mult int aexp
\end{verbatim}

We modify the evaluation function \texttt{aval} to accommodate for the new construct \texttt{Mult}:

\begin{verbatim}
fun aval :: "aexp ⇒ state ⇒ val" where
"aval (N n) s = n" |
"aval (V x) s = s x" |
"aval (Plus a1 a2) s = aval a1 s + aval a2 s" |
"aval (Mult i a) s = i * aval a s"
\end{verbatim}

Step A Implement the function \texttt{normal} which returns \texttt{True} only when the arithmetic expression is normalized.

fun normal :: “aexp ⇒ bool” where

Step B Implement the function \texttt{normalize} which translates an arbitrary arithmetic expression intro a normalized arithmetic expression.

fun normalize :: “aexp ⇒ aexp” where

Step C Prove that \texttt{normalize} does not change the result of the arithmetic expression.

theorem semantics_unchanged: “aval (normalize a) s = aval a s”

Hint: It can be helpful to add the following modifiers to \texttt{auto} and friends: \texttt{split: aexp.split}.

Step D Prove that \texttt{normalize} does indeed return a normalized arithmetic expression.

theorem normalize_normalizes: “normal (normalize a)”