Algorithms for Programming Contests - Week 1

Pranav Ashok, Michael Blondin, Philipp Meyer, Christian Müller, Gregor Schwarz
conpra@in.tum.de

18.10.2017
Official DOMjudge System

- In use for programming contests such as the GCPC or the ICPC.
- On the web:

TUMjudge

https://judge.in.tum.de
Registration

- Registration necessary.

Welcome to TUMjudge!
If you already have an account please choose a contest to participate.

Registration
Please fill in the following form to create an account for you. If you are a student at TUM your login should be the login you use in the computer labs. For instance, use "test" if you have the mail address test@in.tum.de. The password to login is the same as in the computer labs.

Affiliation
TU München

Category
Students
Login

- Authentication necessary.
- Works with LDAP and is identical with the login to the computer lab ("Rechnerhalle").
 - Login is “name” in name@in.tum.de.
 - Password is the corresponding password.
- Forgot your password and want to change / reset it?
 - Get in contact with the RBG, not with us!
Overview

The overview page shows several pieces of information:

- the personal scoreboard of the current contest,
- an overview of already submitted programs,
- an overview of clarifications (more on that later on).

Judge
Overview

Algorithms for Programming Contests SS2015 - Week 10

final standings

<table>
<thead>
<tr>
<th>RANK</th>
<th>TEAM</th>
<th>SCORE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stefan Toman</td>
<td>5</td>
<td>1/0</td>
<td>1/0</td>
<td>1/0</td>
<td>1/632</td>
<td>1/0</td>
</tr>
</tbody>
</table>

Submissions

<table>
<thead>
<tr>
<th>time</th>
<th>problem</th>
<th>language</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.07.2015 11:43</td>
<td>E</td>
<td>JAVA</td>
<td>TOO LATE</td>
</tr>
<tr>
<td>08.07.2015 14:18</td>
<td>B</td>
<td>CPP</td>
<td>CORRECT</td>
</tr>
<tr>
<td>08.07.2015 11:52</td>
<td>D</td>
<td>CPP</td>
<td>CORRECT</td>
</tr>
<tr>
<td>01.07.2015 11:24</td>
<td>E</td>
<td>JAVA</td>
<td>CORRECT</td>
</tr>
</tbody>
</table>

Clarifications

<table>
<thead>
<tr>
<th>time</th>
<th>from to</th>
<th>subject</th>
<th>text</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.07.2015 12:12</td>
<td>Jury All</td>
<td>problem E</td>
<td>Dear students, here is the link to Karl's website for drawing the fractals. ...</td>
</tr>
<tr>
<td>02.07.2015 12:41</td>
<td>Jury All</td>
<td>problem E</td>
<td>Dear students, please remember that we are looking forward to get your great ...</td>
</tr>
</tbody>
</table>

Clarification Requests

No clarification requests.
A problem consists of several parts:

- name, abbreviation, difficulty,
- problem author,
- problem statement,
- input format specification,
- output format specification,
- constraints,
- sample input and output.

SS15N01A Hello World!

Author: Stefan Toman

This is probably the first problem you will solve and it should help you set up and test your system. Solve this problem first to make sure everything is in place.

We would like to introduce you to Lea. You will meet her in many of the problems you will solve. After reading all of them you will know her quite well.

Lea is a very friendly person who likes to say hello to everybody, but she doesn’t want to say the same thing to every person she meets. Therefore, she never knows what to say. For greeting Bob it is appropriate to say “Hello Bob!”, whereas for greeting Peter it is better to say “Hello Peter!” Help her and tell her which sentence to use.

Input

The first line of the input contains an integer t. t test cases follow.

Each test case consists of a single line containing a name $name$.

Output

For each test case, print a line containing “Case #i: Hello $name!” where i is its number, starting at 1. Each line of the output should end with a line break.

Constraints

- $1 \leq t \leq 20$.
- No name will contain whitespaces.
- The names’ lengths will be at most 100.

Sample Data

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2</td>
<td>Case #1: Hello Bob!</td>
</tr>
<tr>
<td>2 Bob</td>
<td>Case #2: Hello Peter!</td>
</tr>
<tr>
<td>3 Peter</td>
<td></td>
</tr>
</tbody>
</table>
Submitting programs

Submitting program is done on the TUMjudge web interface entirely.

- No files to be sent via e-mail etc.
- Only source code files are uploaded, no .class files or similar.

Submit

- Choose files to be uploaded by Drag-and-Drop or in the menu “Choose Files”,
- Choose problem,
- Choose language (unless already chosen automatically),
- “submit”,
- F5, F5, F5, F5, ...
Submitting programs
Judging

The TUMjudge

- compiles,
- executes,
- tests

the submission against several test cases. As long as the TUMjudge is working on a submission, the submission’s status is “PENDING”. The submission is treated instantaneously and the TUMjudge (usually) announces its verdict within a few moments.
Judging

The following verdicts can occur:

CORRECT
The submission successfully solved all the test cases.

COMPILER-ERROR
The submission could not be compiled. The exact error message can be seen on the submission’s detail page.

NO-OUTPUT
The submission does not produce any output. Be sure to output to "standard out".
Judging

TIMELIMIT
The submission runs longer than the maximal allowed time and was terminated.
Possible reasons:
- The submission runs in an endless loop.
- The submission is not efficient enough.

RUN-ERROR
An error occurred during the submission’s execution.
Possible reasons:
- Division by 0.
- Incorrectly addressing memory locations, e.g. ArrayIndexOutOfBoundsException.
- Using more memory than the allowed memory limit.
Judging

WRONG-ANSWER
The submission's output is incorrect.
Possible reasons:
- The answer is just wrong.
- The answer does not conform to the output format specification given on the problem set.
- The answer is not exact enough (e.g. with floating point answers with a desired precision).

TOO-LATE
The program was submitted after the submission deadline. It is stored in the system, but no longer processed.
Scoreboard Algorithms for Programming Contests SS2015 - Week 10

Final standings

<table>
<thead>
<tr>
<th>RANK</th>
<th>TEAM</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jens Woehl</td>
<td>3430</td>
</tr>
<tr>
<td>2</td>
<td>Thomas Tangl</td>
<td>5695</td>
</tr>
<tr>
<td>3</td>
<td>Markus Hassendi</td>
<td>7251</td>
</tr>
<tr>
<td>4</td>
<td>Karl Kraus</td>
<td>9461</td>
</tr>
<tr>
<td>5</td>
<td>Michael Schreiter</td>
<td>13446</td>
</tr>
<tr>
<td>6</td>
<td>Rustem Beikmukhammadov</td>
<td>15914</td>
</tr>
<tr>
<td>7</td>
<td>Phillip Becker</td>
<td>19026</td>
</tr>
<tr>
<td>8</td>
<td>Christian Buttmann</td>
<td>20520</td>
</tr>
<tr>
<td>9</td>
<td>Hemirdeza Rizeh</td>
<td>25226</td>
</tr>
<tr>
<td>10</td>
<td>Rob Cooks</td>
<td>28218</td>
</tr>
<tr>
<td>11</td>
<td>Anjum Arif Ali</td>
<td>29670</td>
</tr>
</tbody>
</table>

Score board

Different background colors indicate different outcomes:

- **Problem solved.**
- **Problem solved first.**
- **Incorrect submission(s).**
- **Submission in pending status.**
- **No submissions.**
Order (tie-breakers):

1. number of solved problems,
2. score:
 - per problem: \((\text{number of incorrect submissions}) \times (\text{penalty time}) + (\text{time for the first correct submission})\),
 - penalty time = 600, i.e., 10 hours,
 - e.g. \(3/1820\) indicates: the problem was solved with 3 submissions, with a total penalty time of 1820.

You can submit any number of times to solve a problem!

Each week’s score itself (apart from the number of problem solved) does not change the grading at the end of the semester, it only affects the position in the scoreboard of that week.
Anybody who does not want to be seen in the public scoreboard, must choose the invisibility option during the registration (in “Category”).
Clarifications

• Messages to the system administrators, i.e., the teaching assistants and/or tutors.
• Sent via the “request clarification” form on the overview page.
• Used for questions about the problems or about the system in general.
• Please choose a subject accordingly: either “general” or the specific problem.
• Depending on the actual question, the answer is only visible to the persons who sent the question, or it is published to all users of the system.
• The answer (along with the question) can be seen on the right side on the overview page.
Clarifications

Time
09.07.2015 12:12
Jury All
Problem E
> Dear students, here is the link to Karl's website for drawing the fractals.

Time
02.07.2015 12:41
Jury All
Problem E
> Dear students, please remember that we are looking forward to get your great ...

Clarification Requests

No clarification requests.
Restrictions

- Compilation of a submission may take no longer than 30 seconds. After that time, compilation is aborted and the verdict will be a COMPILER-ERROR.
- The maximal allowed size of a source code file is 256 KB. Bigger submissions will not be accepted.
- During the execution of a submissions, up to 8 GB of memory is available. This includes source code, variables, stack, Java VM (up to 0.35 GB),... If a submission tries to address more memory, it will be terminated and the verdict will be a RUN-ERROR.
- It is not allowed to use multi threading. Each submission has only one processor fully at its disposal.
Restrictions

Tampering with the system in any way will be penalized!
Do not fool the system!

- Do not open files, input is always in “standard in”.
- Do not address files locally on the system! This is not possible anyways.
- Do not open network connections.
- ...

Furthermore, please keep the number of submissions at an acceptable level as to not unnecessarily slow judging for all participants.
import java.util.Scanner;

public class JavaSubmission {
 public static void main(String[] args) {
 // create scanner object
 Scanner s = new Scanner(System.in);

 // loop over all test cases
 int t = s.nextInt();
 for(int i = 1; i <= t; i++) {
 // read several types of input
 boolean b = s.nextBoolean();
 String st = s.next();

 // output: use the possibility you like more
 System.out.println("Case #"+i+": "+st);
 System.out.format("Case %d#: %s\n", i, st);
 }
 s.close();
 }
}
```cpp
#include <iostream>
#include <stdio.h>

int main() {
    // loop over all test cases
    int t;
    scanf("%d", &t);
    for(int i = 1; i <= t; i++) {

        // read several types of input
        int j;
        std::string s1;
        char s2[101];
        // use the possibility you like more
        std::cin >> j >> s1;
        scanf("%d %100s", &j, s2);
        // output: use the possibility you like more
        std::cout << "Case #" << i << ": " << s1 << std::endl;
        printf("Case #%d: %s %d", i, s2, j);
    }
    return 0;
}
```
Understanding Problems

- Read the problem statement very carefully.
- Also the constraints, think about special cases:
 - E.g. if there are negative values or 0 allowed, then there is probably a test case for that.
 - E.g. special characters or a space when dealing with strings.
 - ...
 - ...
Solving Problems

- Code efficiently.
 - Think about which data types to use.
 - Sometimes arrays might not have to be two- or three-dimensional.
 - Implement algorithms given in the lecture with their amortized running times.
- Look carefully at the input and output specifications and let your program be conform to those!
- Remove all debug messages before submitting.
- Write comments!