
Proving Valid Quantified Boolean Formulas in
HOL Light

Ondřej Kunčar

Charles University in Prague
Faculty of Mathematics and Physics

Automated Reasoning Group
ondrej.kuncar@mff.cuni.cz

Abstract. This paper describes the integration of Squolem, Quantified
Boolean Formulas (QBF) solver, with the interactive theorem prover
HOL Light. Squolem generates certificates of validity which are based
on witness functions. The certificates are checked in HOL Light by con-
structing proofs based on these certificates. The presented approach al-
lows HOL Light users to prove larger valid QBF problems than before
and provides correctness checking of Squolem’s outputs based on the LCF
approach. An error in Squolem was discovered thanks to the integration.
Experiments show that the feasibility of the integration is very sensitive
to implementation of HOL Light and used inferences. This resulted in
improvements in HOL Light’s inference system.

1 Introduction

Deciding whether Quantifier Boolean Formula (QBF) evaluates to true is the
canonical PSPACE-complete problem [20]. This problem can be seen as a gen-
eralization of the well-known Boolean satisfiability problem (SAT). QBF can
contain universal and existential quantifiers over Boolean variables. Let us in-
troduce a simple example, which is nothing else than a definition of the XOR
function:

∀v1 ∀v2 ∃v3. v3 ⇔ ((v1 ∧ ¬v2) ∨ (¬v1 ∧ v2)) . (1)

Whether the problem of true QBFs is harder than SAT is an open problem.
Many problems can be succinctly formulated in QBF – every finite two-player
game, many types of planning [7, 22], model checking for finite systems and other
formal verification problems [2, 3, 6].

Because we work only with closed formulas, validity and invalidity is the
same concept as satisfiability and unsatisfiability respectively. QBF solvers are
nowadays powerful tools, which are able to decide validity or invalidity of QBFs
automatically. Some of them can generate a certificate that witnesses their out-
put. Squolem [17] is a state-of-the-art QBF solver which is able to generate
certificates for valid formulas. These certificates are based on witness functions
for existential quantifiers.



In this paper we present how to prove QBF validity in the HOL Light inter-
active theorem prover [11, 12] using Squolem’s certificates of validity. HOL Light,
made by John Harrison, is a contemporary interactive theorem prover belonging
to the broader family of higher-order logic theorem provers. HOL Light has a
very small LCF-style kernel [8] and, moreover, a simplified version of the kernel
was proved to be correct [10].

The motivation for our work is twofold. First, interactive theorem provers
are nowadays becoming increasingly important thanks to their wide use in areas
such as formal specification and verification of complex systems or formaliza-
tion and verification of mathematics. While these systems often contain a very
powerful formalism, their main weakness is that the construction of the proof is
often lengthy and requires a considerable human effort. As described in Section
2, many integrations of external tools have been done to increase the amount of
automation of interactive theorem provers and to decrease the need for human
resources. Each of these integrations resulted in increased strength of the inter-
active theorem prover – we are talking about situations where formulas that were
infeasible to prove using the built-in tactics are proved within a few seconds.

Second, our construction of a proof in HOL Light can serve as another in-
dependent check of correctness of Squolem. QBF solvers are generally complex
tools with nontrivial implementation in some fast imperative programming lan-
guage (for example C). This fact causes natural concern about correctness of
Squolem. Moreover, it is quite common that QBF solvers disagree on the same
inputs. Because HOL Light has a LCF-style kernel, validation of Squolem’s cer-
tificate in HOL Light lowers significantly the probability that the Squolem’s
answer was incorrect. We really found a small bug in Squolem due to our sys-
tem. If a input of Squolem contains tautological clauses, then Squolem 1.0 gives
an incorrect answer (and of course an incorrect certificate). Squolem 2.0 gives
a correct answer, but still an incorrect certificate. This bug was resolved in the
version 2.01 after we pointed out the problem to Christoph Wintersteiger.

Related work is discussed in the next section. In Section 3 we provide nec-
essary definitions and background. We present the main part of our work, how
to construct a proof of a valid QBF in HOL Light from Squolem’s certificate
of validity, in Section 4. We provide experimental results and technical aspects
concerning the implementation including optimizations in Section 5. Section 6
concludes this paper and suggests directions for future work.

2 Related Work

The most related work is the paper by Weber [24]. In that paper the author
implemented validation of Squolem’s certificates of invalidity in another LCF
interactive prover HOL4, i.e., it is possible to prove that the given QBF is not
valid in HOL4. Squolem’s certificates of invalidity are based on a Q-resolution
proof of ⊥. By replaying the resolution proof, a proof of invalidity in HOL4
is established. In principle, it would be possible to prove validity of QBF by
using the system by Weber. The method is simple: negate the original formula



(valid) and then prove that the negated formula is invalid. But Jussila et al. [17]
demonstrated that QBF solvers often perform significantly worse on negated
problems. Thus we are going to use directly Squolem’s certificates of validity.
In the conclusion section of [24] there is a note that LCF-style checking for
certificates of validity remains future work. To our knowledge, our work is the
first work concerning this task, i.e., proving valid QBFs in an interactive theorem
prover using an external QBF solver.

Other related work comes from the research area of automation of interactive
theorem provers. One of the first integration of an external tool in a trusted
theorem prover was the work by Harrison and Thery [13]. It is important to
mention earlier but the essential result of John Harrison, who tried to integrate
binary decision diagrams (BDD) directly into the HOL Light system [9]. Harrison
found out that performing the BDD operations directly by the LCF kernel is
about 100 times slower (after optimization) rather than a direct implementation
in C. This observation was probably the main reason why most of the further
integrations of decision-making procedures use an external solver (to solve the
task), which generates a certificate/witness of its output, and a respective proof
is generated from such a certificate in the interactive theorem prover.

Let us name just a few recent papers concerning integration of external tools
into interactive theorem provers to increase their automation. For first-order
theorem provers it is work done by Hurd [15, 16] and the Sledgehammer system
[19, 23]. Weber and Amjad [25] integrated SAT solvers with HOL4, Böhme and
Weber integrated the SMT solver Z3 with Isabelle/HOL [4].

Certificates for Squolem were described by Jussila et al. [17]. Other certifi-
cates formats were proposed too, an overview can be found in [21]. Authors of
Squolem developed a stand-alone checker QBV for Squolem’s certificates [17].
It is not surprising that QBV is much more efficient than our approach. On
the other hand, QBV would have to become part of the trusted code if users
of HOL Light wanted to use it to prove QBFs in HOL Light. Moreover, our
system provides a check with much higher assurance than QBV thanks to the
LCF-kernel.

3 Theory

3.1 Quantified Boolean Formulas

As usual, we assume that we have an infinite set of Boolean variables. The
set of literals consists of all variables and their negations. We also extend the
notion of negation to literals and identify ¬¬v with v. A clause is a disjunction
of literals. A propositional formula is in conjunctive normal form (CNF) if it
is a conjunction of clauses. We say that QBF is in prenex normal form if the
formula is concatenation of a quantifier part and a quantifier-free part. Without
loss of generality, we consider only closed QBF in prenex normal form with a
propositional core in CNF – the formal definition is as follows:



Definition 1 (Quantified Boolean Formula). A Quantified Boolean For-
mula (QBF) is a formula of the following form

Q1x1 . . . Qnxn. φ ,

where n ≥ 0, each xi is a Boolean variable, each Qi is the universal ∀ or the
existential ∃ quantifier, and φ is a propositional formula in CNF and all of its
variables are among x1, . . . , xn.

Q1x1 . . . Qnxn is called a quantifier prefix and φ is called a matrix. We define
an order < over variables such that x1 < x2 if x2 is in the scope of x1. We call
a variable the intermost or the outermost variable if it is maximal or minimal
among all variables of formula (with respect to the order <) respectively. We
say that x has a quantification level i if it is on the i-th position in the quantifier
prefix.

If we consider a quantifier prefix as a finite sequence of quantifiers, we can
define two relations on quantifier prefixes ⊆ and �. We define Q1 ⊆ Q2 if the
quantifier prefix Q1 is a subsequence of the quantifier prefix Q2, and Q1 � Q2

if the sequence of the variables in Q1 is a subsequence of the sequence of the
variables in Q2. In other words, Q1 � Q2 if we omit symbols for quantifiers (only
variables left) in Q1 and Q2, and then we ask if the former is a subsequence of
the latter.

The semantics JfK of closed QBF f is defined recursively by expanding the
outermost variable x: J∀x. φK = Jφ[x 7→ 1] ∧ φ[x 7→ 0]K, and similarly J∃x. φK =
Jφ[x 7→ 1]∨φ[x 7→ 0]K. Where φ[x 7→ c] denotes φ in which every free occurrence
of x is replaced by the constant c. We call QBF valid or invalid if its semantics
is 1 or 0 respectively.

3.2 QBF Models

Squolem’s certificate of validity contains a model of the given QBF. The following
general definition of a QBF model is a slightly improved definition used in [5,
17].

Definition 2 (Model). Let Φ = Q1x1 . . . Qnxn. φ be a valid closed QBF in
prenex normal form. Let Vi be the set of variables of Φ that have their quantifi-
cation level less than or equal to i and let Ei and Ai be the sets of the existentially
and universally quantified variables in Vi respectively, i.e., Ei ∪Ai = Vi. Let M
be the set of functions

M := {fvk : {0, 1}k−1 → {0, 1} | vk ∈ En},

where each fvk depends exactly on the k − 1 variables from Vk−1. M is said to
be a model of Φ if

J∀xi1 . . . ∀xik . φ [xj1 7→ fxj1
(x1, . . . , xj1−1), . . . , xjl 7→ fxjl

(x1, . . . , xjl−1)]K = 1,

where {xi1 , . . . , xik} = An and {xj1 , . . . , xjl} = En.



Functions fv in the definition are nothing else than witness functions, which
give witnesses based on (potentially) all preceding variables. As is noted in [17],
it is also possible to let functions fvk only depend on the universally quantified
variables of Vk−1 but the authors of [17] claim that the stated definition may
result in more compact representations of the functions fvk . In practice these
functions are represented by propositional formulas.

3.3 Squolem’s Certificates of Validity

Squolem’s certificate format is described in detail in [18], we describe only the
relevant part – certificates for valid formulas. The format is text based, vari-
ables are represented by positive integers and negated variables are denoted by
negative integers, i.e., integer negation expresses propositional negation. The cer-
tificate describes a model of a given valid QBF by providing witness functions
for existentially quantified variables.

The functions are defined gradually by extensions: definitions that introduce
new Boolean functions defined by propositional formulas. Each new extension
introduces a fresh variable which can be later used for referring to the newly
defined Boolean function. It is a reasonable requirement not to allow an arbitrary
propositional formula in the definition (which would be too hard to verify),
therefore in [18] the authors allow just two special types:

If-Then-Else A new function

f(x, y, z) = if l1 then l2 else l3

is defined as If-Then-Else of three existing variables, where l1, l2 and l3 are
literals in variables x, y and z. This function is not actually denoted in the
certificate by f(x, y, z), but by a newly introduced fresh variable, let us say
w. Then this type of Boolean functions can be represented by the following
propositional formula: w ⇔ (l1 ∧ l2) ∨ (¬l1 ∧ l3).

And A new function

f(x1, . . . , xn) =

n∧
i=1

li

is defined as a conjunction of the n literals li, which use the variables xi.
The number of conjuncts, n, can be an arbitrary non-negative integer. In
the case when n = 0 the defined function is the Boolean constant 1. The
newly defined function is also actually denoted by a fresh variable and its
representation by a Boolean formula is straightforward in this case.

After definitions of all extensions there is a final line containing a list of pairs
(v, lv) for all existentially quantified variables in the given formula. We call the
pairs as witness assignments. Here v is the existentially quantified variable and
lv is a literal representing an already defined extension, i.e., a possibly negated
variable denoting an extension. The corresponding Boolean formula is obvious
v ⇔ lv. This list of witness assignments represents a model in the sense of
Definition 2.



Let us conclude this section by an example of Squolem’s certificate of validity
for formula (1), which is translated into CNF as follows

∀v1 ∀v2 ∃v3. (v3∨v1∨¬v2)∧(v3∨v2∨¬v1)∧(v1∨v2∨¬v3)∧(¬v3∨¬v1∨¬v2) . (2)

Squolem then generates the following certificate:

QBCertificate

E 4 A 1 -2 0

E 5 A -1 2 0

E 6 I 4 4 5

CONCLUDE VALID 3 6

Lines beginning with E represent extensions. These three lines represent three
extensions, the first two lines define And extensions and the third line is the
If-Then-Else extension. The corresponding Boolean formulas are as follows:

v4 ⇔ v1 ∧ ¬v2
v5 ⇔ ¬v1 ∧ v2

v6 ⇔ (v4 ∧ v4) ∨ (¬v4 ∧ v5)

The last line of the certificate says that the witness function for the existen-
tially quantified variable v3 is the extension v6. It is not difficult to see that the
extension v6 together with extensions v4 and v5 defines the Boolean function
XOR.

4 System Description

The overall structure of our system is as follows: first of all, we preprocess the
given formula and serialize it into Squolem’s input format. We run Squolem,
which generates the corresponding certificate of validity. Then we parse this
certificate and finally we construct a proof in HOL Light from information gained
during the parsing. In this section we describe preprocessing of the given formula
and especially construction of the proof. Other parts of our system contain non-
interesting software engineering.

4.1 Preprocessing

As our system supports general closed QBFs and Squolem only works with for-
mulas in CNF and prenex normal form, we had to incorporate a preprocessing
phase. We implemented a näıve version of the transformation using conversions
already available in HOL Light – NNFC CONV, CNF CONV and PRENEX CONV. The
transformation may cause an exponential blowup of the formula. More sophisti-
cated conversions could be implemented as well, but because the main focus of
this paper is on proof reconstruction (and our benchmark problems are already
in prenex CNF), such techniques are beyond the scope of this paper.



The second preprocessing step that was incorporated is renaming of all vari-
ables according to the same scheme. We use the scheme v i where i is a number
representing quantification level of the variable. The scheme provides a uniform
way of mapping variables to integers and vice versa, which is useful for text based
communication with Squolem (i.e., serializing input and parsing certificates) and
in data structures involving variables.

Thus our preprocessing makes the theorem ` Φ∗ ⇔ Φ where Φ is the original
formula and Φ∗ is the preprocessed one, which is in the form Q1v1 . . . Qnvn. φ.
Our goal is to prove ` Φ∗ as a HOL Light theorem given a Squolem’s certificate of
its validity. The original formula is then trivially inferred by the EQ MP inference.

4.2 Validating Squolem’s Model

The question is how to represent the model contained in the given Squolem
certificate. We represent a model as the conjunction of the corresponding Boolean
formulas of all extensions and witness assignments. Let us denote this term by
M, and call it a model term.

For the certificate of formula (1) the model term is defined as follows

M = (v4 ⇔ v1∧¬v2)∧(v5 ⇔ ¬v1∧v2)∧(v6 ⇔ (v4∧v4)∨(¬v4∧v5))∧(v3 ⇔ v6) .

Now we can show how to verify the given model. Let us consider the following
formula

M⇒ φ . (3)

We claim that the given model is really a model of Φ∗ if and only if (3) is a
propositional tautology. It is an easy observation that the value of each variable
that represents a witness function is uniquely determined in every satisfying as-
signments of variables on which the function depends. Let us suppose that (3) is
not a propositional tautology then the negation of (3) M ∧ ¬φ has a satisfying
assignment. This assignment uniquely determines values of existentially quanti-
fied variables in φ, but does not satisfy φ. Thus we find a counterexample that
witnesses that the given model is not actually a model of Φ∗. On the other hand,
if (3) is a propositional tautology then every satisfying assignment of M has to
satisfy φ.

We prove (3) by calling an external SAT solver. For this we followed Weber
and Amjad [25], who integrated external SAT solvers zChaff and MiniSat with
HOL theorem provers including HOL Light. In order to prove a formula to be
a propositional tautology they negate it and run a SAT solver. If the formula is
really a tautology then there is no satisfying assignment of the negated formula
and the SAT solver produces a resolution proof of ⊥. If we replay the resolution
proof in the interactive theorem prover, we get our formula as HOL Light’s
theorem:

`M⇒ φ . (4)



4.3 Adding Quantifiers

Let us denote the quantifier prefix of the formula Φ∗ as Q, thus we have the
following equation: Q = Q1v1 . . . Qnvn. As was described in 3.3, each And and
If-Then-Else extension defines a new fresh variable. We want to define extended
quantifier prefix Qe that correctly incorporates these new fresh variables into Q.
We follow [17] and quantify new variables existentially. An important question
is how to order the new variables with respect to the variables in the original
quantifier prefix – it is clear that they have to be put after the variables on which
their extension function depends. But they can’t be put too deep because then
the corresponding function could depend on variables for which it should serve
as a model. Therefore we put each new variable right after the variable with the
highest quantification level in the extension function.

This method, however, still doesn’t yield a fully correct quantifier prefix.
There is a problem with witness assignments. If we have for example a pair
(vi, vj), the value of vi depends on vj . But vi is not a new fresh variable, it is an
existentially quantified variable from the original quantifier prefix Q. Therefore
it generally doesn’t have to be after the variable vj . Let us consider an example
where Q = ∀v1 ∃v2 ∃v3, and there are the extension v4 = v1∧ v3 and the witness
assignment v2 = v4. After we incorporate v4, we have Qe = ∀v1 ∃v2 ∃v3 ∃v4.
But a value of v2 depends on a value of v4, therefore v2 has to be after v4.
Fortunately, it is logically correct to reorder quantifiers in the block of the same
quantifiers, thus we can move v2 after v4 in our example. In general, we need to
topologically sort each block of existential quantifiers according to their extension
dependencies.1

Our next step is to prove the formula QeM ⇒ Qφ. We prove it from (3)
by sequential addition of quantifiers by the following three inferences, which we
designed and implemented (see 5.1):

` A⇒ B
` (∀x.A)⇒ ∀x.B

` A⇒ B (x not free in B)
` (∃x.A)⇒ B

` A⇒ B
` A⇒ ∃x.B

We go simultaneously through Qe and Q, in a bottom-up fashion, and in each
step we use the first rule from the following list that matches:

– Q = . . . ∃vi – The whole existential block in Q will be sequentially added by
the third inference. Because Qe was made from Q, there has to be the cor-
responding block in Qe. It contains the same variables as the corresponding
block in Q plus potentially some fresh variables from extensions. We add
this block of Qe sequentially by the second inference. The condition ’x not
free in B’ is satisfied because all common variables from the added blocks of
Q and Qe are bounded in B from the first step of this rule.

– Qe = . . . ∃vi – There is an existential block in Qe that contains only fresh
variables from extensions, therefore we can add this block in Qe by the
second inference. If the block contained a non-fresh variable, the first rule
from this list would match.

1 This is possible because Squolem never generates circular dependency between ex-
tensions and witness assignments.



– Qe = . . . ∀vi and Q = . . . ∀vi – Let us note that the universally quantified
variables in Qe and Q have to be the same because we didn’t change order of
variables in the universally quantified blocks. Thus we add both quantifiers
at once by the first inference.

After this juggling with quantifiers we have the following theorem:

` QeM⇒ Qφ . (5)

4.4 Proving The Quantified Model Term

If we were able to prove QeM, we would accomplish our goal because we can
derive ` Qφ from (5) by a call of MP. And because Qφ = Φ∗, we would be done.

We start with the proof of each extension and witness assignment Boolean
formula. For each such a Boolean formula vk = ϑ(vi1 , . . . , vil) we prove the
following theorem

` ∀vi1 . . . ∀vil ∃vk. vk = ϑ(vi1 , . . . , vil) (6)

by the following derivation

REFLϑ(vi1
,...,vil )` ϑ(vi1 , . . . , vil) = ϑ(vi1 , . . . , vil) CHOOSE∃vk. vk=ϑ(vi1 ,...,vil ), ϑ(vi1 ,...,vil )` ∃vk. vk = ϑ(vi1 , . . . , vil)) GENvil` ∀vil ∃vk. vk = ϑ(vi1 , . . . , vil)

... GENvi1
.

` ∀vi1 . . . ∀vil ∃vk. vk = ϑ(vi1 , . . . , vil)

It is very important to note that we ordered the variables vi1 , . . . , vil according
to their quantification levels in Qe. Let E1, . . . , EN be all extension and witness
assignment Boolean functions and let Q1, . . . ,QN be the quantifier prefixes that
we get in expressions (6) for each Boolean function. Because we made Qe in 4.3
so that each existential variable goes after the variables on which it depends and
because we ordered the variables vi1 , . . . , vil in the same order as they appear in
Qe, we get for all i that Qi � Qe.

We can rewrite expressions (6) as QiEi for each extension. Let us consider
the following formula (Q1E1)∧· · ·∧(QNEN ). We show in the rest of this section
that we are able to “lift” each Qi in front of the big conjunction of Ei’s in such
a way that we get the following theorem

` Qe(E1 ∧ · · · ∧ EN ) , (7)

which is nothing else than ` QeM.
We designed and implemented the following inference

Q′A Q′′B
LIFT,

Q′′′(A ∧B)



which has the following property: if Q′ � Qe and Q′′ � Qe, then Q′′′ � Qe.
In addition, these two relations hold unconditionally: Q′ � Q′′′ and Q′′ � Q′′′.
With LIFT it is almost possible (we derive Q∗ instead of Qe) to derive (7) by
N − 1 calls of LIFT:

` Q1E1

` QN−2EN−2

` QN−1EN−1 ` QNEN
LIFT` Q′(EN−1 ∧ EN )

LIFT` Q′′(EN−2 ∧ EN−1 ∧ EN )

. . .
...

LIFT
` Q

′...′(E2 ∧ · · · ∧ EN−2 ∧ EN−1 ∧ EN )
LIFT` Q∗(E1 ∧ E2 ∧ · · · ∧ EN−2 ∧ EN−1 ∧ EN )

Now we finish a proof of (7). From the above written properties of LIFT
it follows that Q∗ � Qe. Because we have for every existentially quantified
variable the corresponding extension2, and because LIFT prefers existentially
quantified variables during lifting (see next section), each Qi contributes by
exactly one existentially quantified variable into Q∗. Therefore Q∗ contains the
same existentially quantified variables as Qe. From that follows that Q∗ ⊆ Qe.
This generally does not have to be equality because some universally quantified
variables from Qe can be missing in Q∗. Those are exactly the variables that
weren’t present in any extension, i.e., they are not free in M, and therefore they
can be quite easily added in Q∗. Our rule ADD MISSING UNIVERSALS does
this job – it is a simple use of HOL Light’s rewriting conversions:

` Q∗(E1 ∧ · · · ∧ EN )
ADD MISSING UNIVERSALS` Qe(E1 ∧ · · · ∧ EN )

4.5 LIFT

The main goal of LIFT is to prove the following implication

` (Q′A ∧Q′′B)⇒ Q′′′(A ∧B) . (8)

If we have (8), it is straightforward to derive the conclusion of LIFT by a call of
CONJ and MP.

Because Q′ � Qe and Q′′ � Qe, all we need to do is to merge Q′ and
Q′′ together according to quantification levels. If we find items of Q′ and Q′′

that have different quantifiers, we prefer existential quantifier. We start with
` A ∧B ⇒ A ∧B, which we derive by ASSUMEA∧B and DISCH ALL.

Then we go simultaneously through Q′ and Q′′, in a bottom-up fashion, and
perform merging using the following inferences, which we implemented:

` (A ∧B)⇒ C

` ((∀x.A) ∧ ∀x.B)⇒ ∀x.C
2 If Squolem doesn’t generate a witness function for some existentially quantified vari-

able vi, we add the following artificial extension vi ⇔ 1.



` (A ∧B)⇒ C

` ((∃x.A) ∧ ∀x.B)⇒ ∃x.C
` (A ∧B)⇒ C

` ((∀x.A) ∧ ∃x.B)⇒ ∃x.C

` (A ∧B)⇒ C
x /∈ B` ((∀x.A) ∧B)⇒ ∀x.C

` (A ∧B)⇒ C
x /∈ B` ((∃x.A) ∧B)⇒ ∃x.C

` (A ∧B)⇒ C
x /∈ A` (A ∧ ∀x.B)⇒ ∀x.C

` (A ∧B)⇒ C
x /∈ A` (A ∧ ∃x.B)⇒ ∃x.C

The notation ’x /∈ B’ means ’x is not free in B’. For example, if we encounter
two universal quantifiers with the same variables, we use the first rule. On the
other hand, if we need to merge two universal quantifiers with different variables
and the first variable has higher quantification level than the second, we use the
fourth rule and so on.

It is an important observation that we cannot encounter two existential quan-
tifiers with the same variable. As was discussed in 4.4, each Qi contributes by
exactly one existentially quantified variable and all these variables are different.
If we encountered this two-existentials situation, it would be a problem because
it generally doesn’t hold that ((∃x.A) ∧ ∃x.B)⇒ ∃x.A ∧B.

5 Implementation and Evaluation

5.1 Implementation of Rules

HOL Light has a very simple kernel especially in comparison with HOL4 or
Isabelle/HOL. Many rules are not included in HOL Light’s kernel and they are
derived from primitive rules, including for example the rule MP – modus ponens.
It turns out to be one of the sources of inefficiency. We discussed three rules for
adding quantifiers into (3) in 4.3. It is natural to implement the second rule
by HOL Light’s CHOOSE and the third rule by EXISTS.3 We tried it but this
approach turned out to be significantly slower than the following approach: We
prove the following schematic theorems

` (∀x.A⇒ B)⇒ ((∀x.A)⇒ ∀x.B) ` (A⇒ B)⇒ (A⇒ ∃x.B)

` (∀x.A⇒ B)⇒ (∃x.A⇒ B), x not free in B,

and in every call of the corresponding rules from 4.3, we instantiate them prop-
erly and by MP derive the consequent. We used similar approach in the imple-
mentation of rules used in LIFT.

5.2 Alpha-Equivalence Optimization

After we implemented optimizations described in 5.1, performance was still poor.
We did some profiling to gain a deeper insight into this problem, and made a
quite surprising discovery. Our system spent 99.4 % of the time in HOL Light’s

3 Both of rules are for example implemented directly in the HOL4 kernel [14].



Table 1. Profiling results

non-optimized optimized

function relative time (%) number of calls relative time (%) number of calls

orda 99.4 668974 16.63 668974
ordav 97.84 19786610 2.59 125146
compare and == 92.33 1225276114 13.67 951183

kernel function alphaorder. This function implements the order of HOL Light’s
terms with the property that alpha-equivalent terms are equal according to this
order. This order is among others used to implement the simple test that two
terms are alpha-equivalent. The test for alpha-equivalence is a common test in
HOL Light’s rules; for example, it is used in the MP rule.

The implementation of alphaorder t1 t2 is as follows: go simultaneously
through (up to bottom) the structure of t1 and t2 and compare recursively
smaller parts. A list of pairs of alpha-equivalent bound variables is maintained
during the traversal. This traversal is implemented in the function orda. If λx. s1
and λy. s2 are compared, then a new pair of alpha-equivalent variables (x, y) is
added to the front of the list. If we need to compare two variables, we have to
check the list of alpha-equivalent variables first, which is done in linear time.
The comparison of variables is implemented in the function ordav.

This linear-time implementation is ineffective for formulas with many ab-
stractions. Because the test for alpha-equivalence of two variables is linear, the
test for the whole formula is quadratic. It seems that this is not a problem in
normal use of HOL Light (i.e., if common formulas are used). But we work with
formulas which have thousands of variables, and because we work only with
closed formulas and each quantifier is encoded by a particular type of abstrac-
tion, our formulas have thousands of abstractions.

Our optimization is based on the observation of the problem that alpha-
equivalence of two identical terms is still possibly quadratic because the pair
(x, y) is added to the list even if x and y are identical variables. Thus our opti-
mization is as follows: we detect if the list of alpha-equivalent variables contains
pairs of identical variables. If so, we do not use this list. Thus comparison of
two identical formulas is linear and not quadratic because all pairs of variables
are only compared, and there is no need to go through the list in linear time.
The complexity can be actually improved even more because if we do not take
the list of alpha-equivalent variables into consideration, we can compare shared
subterms only by comparing two pointers pointing to this shared subterm. And
this pointer comparison is a constant time operation.

Thanks to this optimization we get a speed-up factor of 321.0 (see 5.3).
Detailed profiling data can be seen in Table 1.

5.3 Run-Times

We performed a set of benchmarks to show performance of our implementation
and feasibility of validation of Squolem’s certificates in HOL Light. We used a



Table 2. Detailed evaluation results for the time limit of 60 seconds

exten- non.
instance name qntfs. vars. clauses sions opt. (s) SAT (s) model (s) total (s)
Adder2-2-s 6 249 292 580 179.7 0.3 0.3 1.3
adder-2-sat 4 64 109 206 16.5 0.3 0.1 0.5
CHAIN12v.13 3 925 4582 1809 ∞ 3.6 2.0 30.7
CHAIN13v.14 3 1080 5458 2090 ∞ 4.6 2.6 45.6
comp.blif 0.10 1.00 0 1 inp exact 3 307 844 4973 ∞ 4.9 30.6 59.1
counter 2 5 42 103 362 40.3 0.2 0.2 0.5
counter e 2 5 50 123 740 395.1 0.3 0.5 1.3
counter r 2 5 50 121 408 56.6 0.2 0.2 0.6
counter re 2 5 58 141 639 228.6 0.3 0.4 1.1
impl02 5 10 18 22 0.0 0.0 0.0 0.0
impl04 9 18 34 42 0.1 0.0 0.0 0.0
impl06 13 26 50 62 0.4 0.0 0.0 0.1
impl08 17 34 66 82 0.7 0.1 0.0 0.1
impl10 21 42 82 102 1.1 0.1 0.0 0.2
impl12 25 50 98 122 1.9 0.1 0.0 0.2
impl14 29 58 114 142 3.0 0.1 0.0 0.2
impl16 33 66 130 162 4.0 0.1 0.1 0.3
impl18 37 74 146 182 6.6 0.1 0.1 0.4
impl20 41 82 162 202 7.5 0.2 0.1 0.5
k d4 n-4 17 393 1312 3105 ∞ 4.9 7.2 26.7
k dum n-12 35 620 1594 2911 ∞ 3.9 5.7 30.1
k dum n-16 43 796 2062 3799 ∞ 9.1 9.5 50.5
k dum n-4 19 262 649 1152 1400.7 0.8 1.0 4.6
k dum n-8 27 444 1126 2023 ∞ 1.7 2.7 13.2
k grz n-4 17 317 902 1767 ∞ 1.9 2.3 10.5
k grz n-8 17 433 1413 3050 ∞ 3.9 7.6 29.4
k path n-12 29 876 2440 4235 ∞ 4.3 12.2 58.2
k path n-4 13 324 888 1464 2839.2 1.2 1.5 7.1
k path n-8 21 600 1664 2846 ∞ 2.4 5.4 26.6
k ph n-4 5 141 411 726 328.7 0.5 0.6 2.1
k poly n-4 29 330 743 1513 2956.5 1.4 1.6 7.3
k poly n-8 53 654 1475 3097 ∞ 4.4 6.5 31.1
k t4p n-4 27 624 1895 4058 ∞ 10.3 12.5 55.1
mutex-16-s 2 1378 1779 3523 ∞ 2.4 7.5 32.1
mutex-2-s 2 104 127 214 10.8 0.1 0.1 0.3
mutex-4-s 2 286 363 612 223.5 0.4 0.4 1.6
mutex-8-s 2 650 835 1652 ∞ 0.9 1.9 7.3
qshifter 3 2 19 128 128 4.2 0.2 0.1 0.3
qshifter 4 2 36 512 512 194.0 1.3 0.4 2.6
qshifter 5 2 69 2048 2048 ∞ 8.8 4.1 30.8
s27 d2 s 3 65 142 166 4.7 0.1 0.1 0.2
s298 d2 s 3 699 1895 1469 2526.8 1.5 1.2 12.6
s499 d2 s 3 950 2665 2093 ∞ 2.9 3.5 27.0
TOILET2.1.iv.4 3 37 99 89 0.8 0.1 0.0 0.1
tree-exa10-10 2 20 18 19 0.0 0.0 0.0 0.0
tree-exa10-15 2 30 28 29 0.1 0.0 0.0 0.0
tree-exa10-20 2 40 38 39 0.2 0.0 0.0 0.1
tree-exa10-25 2 50 48 49 0.3 0.0 0.0 0.1
tree-exa10-30 2 60 58 59 0.5 0.0 0.0 0.1
z4ml.blif 0.10 0.20 0 1 inp exact 5 65 193 1087 1759.2 0.7 1.3 2.9
z4ml.blif 0.10 0.20 0 1 out exact 3 61 185 1221 2480.7 0.8 1.5 3.3
z4ml.blif 0.10 1.00 0 1 inp exact 3 66 200 546 155.1 0.3 0.3 0.9
z4ml.blif 0.10 1.00 0 1 out exact 3 64 196 1219 2411.1 0.8 1.5 3.3

Table 3. Evaluation results for various time limits

time limit (s) success rate (%) average time (s) quantifier blocks variables clauses

5 33 0.9 41 286 649

60 53 12 53 1378 5458

600 81 73 133 3015 17752

3000 94 248 133 11570 19663



similar methodology as in [17, 24]. The authors of Squolem conducted experi-
ments on the 2005 fixed instance and the 2006 preliminary QBF-Eval data sets,
in total 445 instances of QBFs [17]. We ran Squolem with the time limit of
600 seconds and the memory limit of 1 GB. Squolem solved 100 valid problems
within the given limits. We ran our system on these 100 valid QBF problems.

All benchmarks were run on a Linux system with four AMD Phenom II X4
955 processors (3.2 GHz) and with 8 GB RAM. We set time limits to 5, 60, 600
and 3000 seconds and the memory limit to 1.5 GB RAM. We present our results
for these time limits in Table 3. One can see in the table that we are able to
solve more than half of our instances within the time limit of 60 seconds and the
success rate is 94 percents for the time limit of 3000 seconds. Also one can see
that we are able to solve instances with thousands of variables.

We have decided to show detailed evaluation results for the time limit of 60
seconds. We present our data in the same format as Weber [24] to allow easy
comparison of the results. The data can be found in Table 2. The first column
contains the name of a benchmark; the next three columns give a characterization
of a formula by providing three size parameters of the formula – the number of
the quantifier blocks, variables and clauses. The fifth column gives the size of
Squolem’s certificate measured by the number of the generated extensions. The
next column contains the run-time of our system without the alpha-equivalence
optimization. The symbol∞ denotes the case when the time limit of 3600 seconds
was exceeded.

The last three columns contain run-times for validation of Squolem’s certifi-
cates in HOL Light. The SAT column tells how much time we spent by con-
structing the proof of (3) using the external SAT solver, i.e., by validating the
model (see 4.2). The model column shows the run-time of proving the quantified
model term (see 4.4). The last column finally contains the total run-time of our
system for the given problem. All run-time columns are given in seconds and
rounded to one decimal place. If we consider only instances for which we have
data for non-optimized implementation, we get a speed-up factor of 321.0 for
non-optimized vs. optimized implementation.

6 Conclusions and Future Work

We have developed and implemented a system that constructs proofs of valid
QBFs from Squolem’s certificates of validity. Our evaluation showed that this
task is feasible – more than half of our benchmarks were solved within the time
limit of 60 seconds. We had a similar experience with implementation as in [24,
25], namely that performance is very sensitive to used inferences and to imple-
mentation details of the inference kernel. We proposed an optimization in HOL
Light’s kernel concerning computation of alpha-equivalence of terms, and got a
speed-up factor of 321.0. Our implementation is freely available from the follow-
ing web address: http://ktiml.mff.cuni.cz/~kuncar/squolem2hollight.

As was discussed in detail in Section 1, our system has two main applica-
tions. First, our system increases the amount of automation of HOL Light, and



allows HOL Light’s users to prove QBFs that are beyond the scope of the built-in
tactics of HOL Light. Proving these formulas without our work would demand
considerable human effort. Second, our approach can be used for validating cor-
rectness of Squolem’s results because of HOL Light’s small LCF-style kernel. A
small bug was found and resolved in Squolem due to our work.

An alternative approach to using the LCF-style kernel directly is the use
of reflection. This alternative approach requires implementation and a proof of
correctness of a checker for Squolem’s certificates in the prover’s logic. Then
this checker is run without producing any proof. In general, reflection provides
better performance and still relatively high correctness assurances. To our best
knowledge, there has not been done any work on reflectively verifying QBF
solvers. There is also no support for reflection in HOL Light, namely one would
have to integrate a reflection rule into HOL Light’s kernel allowing it to trust
the results of such a verified checker.

Some possible directions for future work are as follows: (i) There is still small
room for further optimization, but probably not so radical as we presented. (ii)
It is possible to implement our approach in other LCF-style interactive theorem
provers, namely HOL4 and Isabelle/HOL. One can expect that implementation
can differ because of variations in their kernels. (iii) Another direction is to
continue in the general research of automation of interactive theorem provers,
and integrate other systems. Integration of the system MetiTarski [1] seems to
be the next challenging research task.

Acknowledgments. The author would like to thank John Harrison for propos-
ing various optimizations in the code. This research was partially supported by
SVV project number 263 314.

References

1. Akbarpour, B., Paulson, L.C.: MetiTarski: An Automatic Theorem Prover for Real-
Valued Special Functions. J. Autom. Reasoning 44(3), 175–205 (2010)

2. Benedetti, M., Mangassarian, H.: QBF-Based Formal Verification: Experience and
Perspectives. vol. 5, pp. 133–191 (2008)

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: TACAS. LNCS, vol. 1579, pp. 193–207 (1999)

4. Böhme, S., Weber, T.: Fast LCF-Style Proof Reconstruction for Z3. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP. Lecture Notes in Computer Science, vol. 6172, pp.
179–194. Springer (2010)

5. Büning, H.K., Zhao, X.: On Models for Quantified Boolean Formulas. In: Lenski,
W. (ed.) Logic versus Approximation, Lecture Notes in Computer Science, vol.
3075, pp. 18–32. Springer Berlin / Heidelberg (2004)

6. Dershowitz, N., Hanna, Z., Katz, J.: Bounded Model Checking with QBF. In:
Bacchus, F., Walsh, T. (eds.) SAT. Lecture Notes in Computer Science, vol. 3569,
pp. 408–414. Springer (2005)

7. Giunchiglia, E., Narizzano, M., Tacchella, A.: QBF Reasoning on Real-World In-
stances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT (Selected Papers. Lecture Notes
in Computer Science, vol. 3542, pp. 105–121. Springer (2004)



8. Gordon, M.: From LCF to HOL: a short history. In: Plotkin, G.D., Stirling, C.,
Tofte, M. (eds.) Proof, Language, and Interaction. pp. 169–186. The MIT Press
(2000)

9. Harrison, J.: Binary Decision Diagrams as a HOL Derived Rule. Comput. J. 38(2),
162–170 (1995)

10. Harrison, J.: Towards Self-verification of HOL Light. In: Furbach, U., Shankar, N.
(eds.) IJCAR. Lecture Notes in Computer Science, vol. 4130, pp. 177–191 (2006)

11. Harrison, J.: The HOL Light theorem prover (2010), http://www.cl.cam.ac.uk/

~jrh13/hol-light/

12. Harrison, J., Slind, K., Arthan, R.: HOL. In: Wiedijk, F. (ed.) The Seventeen
Provers of the World. Lecture Notes in Computer Science, vol. 3600, pp. 11–19.
Springer (2006)

13. Harrison, J., Théry, L.: A skeptic’s approach to combining HOL and Maple. Journal
of Automated Reasoning 21, 279–294 (1998)

14. HOL contributors: HOL4 Kananaskis 6 source code (2010), retreived February, 6
2011 from http://hol.sourceforge.net

15. Hurd, J.: An LCF-Style Interface between HOL and First-Order Logic. In:
Voronkov, A. (ed.) CADE. Lecture Notes in Computer Science, vol. 2392, pp.
134–138. Springer (2002)

16. Hurd, J.: First-Order Proof Tactics in Higher-Order Logic Theorem Provers.
In: Archer, M., Vito, B.D., Muñoz, C. (eds.) Design and Application of Strate-
gies/Tactics in Higher Order Logics (STRATA 2003). pp. 56–68. No. NASA/CP-
2003-212448 in NASA Technical Reports (Sep 2003)

17. Jussila, T., Biere, A., Sinz, C., Kröning, D., Wintersteiger, C.: A First Step Towards
a Unified Proof Checker for QBF. In: Marques-Silva, J., Sakallah, K. (eds.) Theory
and Applications of Satisfiability Testing – SAT 2007, Lecture Notes in Computer
Science, vol. 4501, pp. 201–214. Springer Berlin / Heidelberg (2007)

18. Kröning, D., Wintersteiger, C.: A file format for QBF certificates (2007), retreived
February, 6 2011 from http://www.cprover.org/qbv/download/qbcformat.pdf

19. Meng, J., Paulson, L.C.: Translating Higher-Order Clauses to First-Order Clauses.
J. Autom. Reasoning 40(1), 35–60 (2008)

20. Meyer, A., Stockmeyer, L.: Word Problems Requiring Exponential Time. In: Proc.
5th ACM Symp. on the Theory of Computing. pp. 1–9 (1973)

21. Narizzano, M., Peschiera, C., Pulina, L., Tacchella, A.: Evaluating and certifying
QBFs: A comparison of state-of-the-art tools. AI Commun. 22(4), 191–210 (2009)

22. Otwell, C., Remshagen, A., Truemper, K.: An Effective QBF Solver for Plan-
ning Problems. In: Arabnia, H.R., Joshua, R., Ajwa, I.A., Gravvanis, G.A. (eds.)
MSV/AMCS. pp. 311–316. CSREA Press (2004)

23. Paulson, L.C., Susanto, K.W.: Source-Level Proof Reconstruction for Interactive
Theorem Proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs. Lecture Notes in
Computer Science, vol. 4732, pp. 232–245. Springer (2007)

24. Weber, T.: Validating QBF Invalidity in HOL4. In: Kaufmann, M., Paulson, L.
(eds.) Interactive Theorem Proving, Lecture Notes in Computer Science, vol. 6172,
pp. 466–480. Springer Berlin / Heidelberg (2010)

25. Weber, T., Amjad, H.: Efficiently checking propositional refutations in HOL theo-
rem provers. Journal of Applied Logic 7(1), 26–40 (2009), special Issue: Empirically
Successful Computerized Reasoning


