A Verified Decision Procedure for MSO on Words
Based on Derivatives of Regular Expressions

Dmitriy Traytel Tobias Nipkow
Technische Universität München
Munich, Germany
traytel@in.tum.de www.in.tum.de/~nipkow

Abstract—Monadic second-order logic on finite words (MSO) is a decidable yet expressive logic into which many decision problems can be encoded. Since MSO formulas correspond to regular languages, equivalence of MSO formulas can be reduced to the equivalence of some regular structures (e.g., automata). However, formal verification of automata is a difficult task. Instead, the recursive data structure of regular expressions simplifies the formalization, notably by offering a structural induction principle.

Decision procedures of regular expression equivalence have been formalized before, usually based on Brzozowski derivatives. Yet, for a straightforward embedding of MSO formulas into regular expressions an extension of regular expressions with a projection operation is required. We prove total correctness and completeness of an equivalence checker for regular expressions extended in that way. We also define a semantics-preserving translation of MSO formulas into regular expressions. Our results have been formalized and verified in the theorem prover Isabelle. Using Isabelle’s code generation facility, this yields a formally verified algorithm that decides equivalence of MSO formulas.

Index Terms—MSO, decision procedure, regular expressions, Brzozowski derivatives, interactive theorem proving, Isabelle

I. INTRODUCTION

Monadic second-order logic on finite words (MSO) is a decidable yet expressive logic into which many decision problems can be encoded [21]. Note that by MSO we always refer to the logic of one successor. Nevertheless several closely related semantics can be found in the literature. We consider MSO over finite words (sometimes called M2L(Str) [13]), as opposed to WS1S, the weak monadic second-order logic of 1 successor (see Section V). There seems to be some disagreement as to which semantics is the more appropriate one for verification purposes [3], [14].

Essentially, MSO formulas describe regular languages. Therefore MSO formulas can be decided by translating them into automata. This is the basis of the highly successful MONA tool [12] for deciding WS1S. MONA’s success is due to its (in practical terms) highly efficient implementation and to the ease with which very different verification problems can be encoded in monadic second-order logic. Because of these properties, MONA was linked to Isabelle by Basin and Friedrich [4] and to PVS by Owre and Rueß [19]. In both cases, MONA is used as an oracle for deciding formulas in the respective theorem prover. Because MONA is not verified it has to be trusted.

In contrast to automata, which are typically implemented with low-level and hard-to-verify data structures, regular expressions are recursive data types that functional programmers and theorem provers love because they lead to recursive functions that can be verified by structural induction. The key are Brzozowski’s derivatives [7], which can be seen as a way of simulating automaton states with regular expressions and computing the next-state function symbolically. Within the last three years this has lead to a number of publications that have employed theorem provers (Coq, Isabelle and Matita) to formalize and verify decision procedures for equivalence of regular expressions based on derivatives. Coquand and Siles [9] state in their future work section that an ambitious project will be to use this line of work for writing a decision procedure for WS1S. Our paper does just that, except that we work with the closely related MSO on finite words. More than that: we show not only how to do it (in Isabelle) but also that the resulting implementation is efficient enough for small examples.

In this paper we distinguish ordinary regular expressions that contain only concatenation, union, and iteration from extended regular expressions that also provide complement and intersection.

The rest of the paper is organized as follows. Section II gives an overview of related work. Section III introduces some basic notations. Sections IV and V constitute the main contribution of our paper—the first shows how to decide equivalence of extended regular expressions with an additional projection operation, the second reduces equivalence of MSO formulas to equivalence of exactly those regular expressions. In total this yields a decision procedure for MSO on words. A short case study of the decision procedure is given in Section VI.

II. RELATED WORK

In this paragraph we look at work that was conducted within the context of a theorem prover. The first authors to publish a verified equivalence checker for regular expressions were Braibant and Pous [6]. They worked with automata, not regular expressions, their theory was large and their algorithm efficient. In response, Krauss and Nipkow [15] gave a much simpler partial correctness proof for an equivalence checker for regular expressions based on derivatives. Coquand
and Siles [9] showed total correctness of their equivalence checker for extended regular expressions based on derivatives. Asperti [2] presented an equivalence checker for regular expressions via "pointed regular expressions", i.e. regular expressions with markers (analogous to [10]), and showed total correctness. Moreira et al. [16] presented an equivalence checker for regular expressions based on partial derivatives and showed its total correctness.

The nice algebraic nature of derivatives was also noticed by some functional programmers [10], [18] in the context of regular expression matching; no proofs were given.

Berghofer and Reiter [5] formalized a decision procedure for Presburger arithmetic via automata in Isabelle/HOL.

III. PRELIMINARIES

Although we formalized everything in this paper in the theorem prover Isabelle/HOL [17], no knowledge of theorem provers or Isabelle/HOL is required because we employ mostly ordinary mathematical notation in our presentation. Some specific notations are summarized below.

The symbol \mathbb{B} represents the type of Booleans, where \top and \bot represent true and false. The type of sets and the type of lists over some type τ are denoted τ and $\tau list$. In general, type constructors follow their arguments. The letters α and β represent type variables. The notation $\iota :: \tau$ means that term ι has type τ.

Many of our functions are curried, i.e. of type $\tau_1 \rightarrow \tau_2 \rightarrow \tau$ instead of $\tau_1 \times \tau_2 \rightarrow \tau$. In some cases we write the first argument as an index: instead of $f a b$ we write $f_{a b}(b)$ (in preference to just $f_a b$). The projections of pairs to their first and second component are denoted by fst and snd.

The image of a function f over a set S is written $f \cdot S$. Lists are built up from the empty list $[]$ via the infix # operator that prepends an element x to a list xs: $x \# xs$. Two lists are concatenated with the infix @ operator. Function map $:: (\alpha \rightarrow \beta) \rightarrow \alpha list \rightarrow \beta list$ applies its first argument to all elements of its second argument. Accessing the nth element of a list xs is denoted by $xs[n]$; the indexing is zero-based. The length of the list xs is written $|xs|$.

Finite words as in formal language theory are modelled as finite lists, i.e. type $\alpha list$. The empty word is the empty list. As is customary, concatenation of two words u and v is denoted by their juxtaposition uv; similarly for a single letter a of the alphabet and a word w: aw. That is, the operators $\#$ and $@$ remain implicit (for words, not for arbitrary lists).

IV. EXTENDED REGULAR EXPRESSIONS

In Section V, MSO formulas are translated into regular expressions such that encodings of models of a formula correspond exactly to words in the regular language. Thereby, equivalence of formulas is reduced to the equivalence of regular expressions.

Decision procedures for equivalence of regular expression have been formalized earlier in theorem provers. Here, we extend the existing formalization and the soundness proof in Isabelle/HOL by Krauss and Nipkow [15] with negation and intersection operation on regular expressions, as well as with a nonstandard projection operation. Additionally, we provide proofs of termination and completeness.

A. Syntax and Semantics

Regular expressions extended with intersection and complement allow us to encode Boolean operators on formulas in a straightforward fashion. A further operation—the projection Π—plays the crucial role of encoding existential quantifiers. These Π-extended regular expressions (to distinguish them from mere extended regular expressions) are defined as a recursive data type αRE, where α is the type of the underlying alphabet. In conventional concrete syntax, αRE is defined by the grammar

$$ r = 0 | 1 | \alpha | r + s | r \cdot s | r^* | r \cap s | \neg r | \Pi r $$

where $r, s :: \alpha RE$ and $\alpha :: \alpha$. Note that much of the time we will omit the "\Pi"-extension" and simply speak of regular expressions if there is no danger of confusion.

We assume that type α is partitioned into a family of alphabets Σ_n that depend of a natural number n. In our application, n will represent the number of free variables of the translated MSO formula. For now Σ_n is just a parameter of our setup.

We focus on wellformed regular expressions where all atoms come from the same alphabet Σ_n. This will guarantee that the language of such a wellformed expression is a subset of Σ_n^*. The projection operation complicates wellformedness a little. Because projection is meant to encode existential quantifiers, projection should transform a regular expression over Σ_{n+1} into a regular expression over Σ_n, just as the existential quantifier transforms a formula with $n+1$ free variables into a formula with n free variables. Thus projection changes the alphabet.

Wellformedness is defined as the recursive predicate $wf :: \mathbb{N} \rightarrow \alpha RE \rightarrow \mathbb{B}$.

$$ \begin{align*}
wf_n(0) &= \top \\
wf_n(a) &= a \in \Sigma_n \\
wfn(r + s) &= wfn(r) \land wfn(s) \\
wfn(r \cdot s) &= wfn(r) \lor wfn(s) \\
wfn(r \cap s) &= wfn(r) \land wfn(s) \\
wfn(\Pi r) &= wfn_{n+1}(r)
\end{align*} $$

We call a regular expression r n-wellformed if $wfn(r)$ holds.

The language $L :: \mathbb{N} \rightarrow \alpha RE \rightarrow (a list)$ set of a regular expression is defined as usual, except for the equations for complement and projection. For an n-wellformed regular expression the definition yields a subset of Σ_n.

$$ \begin{align*}
L_n(0) &= \{\} \\
L_n(a) &= \{a\} \\
L_n(r + s) &= L_n(r) \cup L_n(s) \\
L_n(r \cdot s) &= L_n(r) \cdot L_n(s) \\
L_n(r^*) &= \Sigma_n^* \\
L_n(r \cap s) &= L_n(r) \cap L_n(s) \\
L_n(\Pi r) &= \text{map} \cdot L_{n+1}(r)
\end{align*} $$
The first unusual point is the parametrization with \(n \). It expresses that we expect a regular expression over \(\Sigma_n \) and is necessary for the definition \(L_n(\pi) = \Sigma_n^* \cdot L_n(\pi) \).

The definition \(L_n(\Pi r) = map \pi \cdot L_{n+1}(r) \) is parameterized by a function \(\pi : \Sigma_{n+1} \to \Sigma_n \). The projection \(\Pi \) denotes the homomorphic image under this fixed \(\pi \). In more detail: map lifts \(\pi \) homomorphically to words (lists), and \(\cdot \) lifts it to sets of words. Therefore \(\Pi \) transforms a language over \(\Sigma_{n+1} \) into a language over \(\Sigma_n \).

To understand the “projection” terminology, it is helpful to think of elements of \(\Sigma_n \) as lists of fixed length \(n \) over some alphabet \(\Sigma \) and of \(\pi \) as the tail function on lists that drops the first element of the list. A word over \(\Sigma_n \) is then a list of lists. Though this is a good intuition, the actual encoding of formulas later on will be slightly more complicated. Fortunately we can ignore these complications for now by working with arbitrary but fixed \(\Sigma_n \) and \(\pi \) in the current section.

B. Deciding Language Equivalence

Now we turn our attention to deciding equivalence of \(\Pi \)-extended regular expressions. The key concepts required for this are finality and derivatives. We call a regular expression final if its language contains the empty word \(\epsilon \). Finality can be easily checked syntactically by the following recursive function \(\epsilon : \alpha \, \text{RE} \to \Bbb B_1 \).

\[
\epsilon(0) = \bot \\
\epsilon(1) = \top \\
\epsilon(a) = \bot \\
\epsilon(\ell \cdot s) = \epsilon(\ell) \land \epsilon(s) \\
\epsilon(\ell \land s) = \epsilon(\ell) \land \epsilon(s) \\
\epsilon(\Pi r) = \epsilon(r)
\]

The characteristic property—\(\epsilon(r) \) if \(\ell \in L_n(r) \) for any regular expression \(r \) and \(n \in \mathbb{N} \)—follows by structural induction on \(r \).

The second key concept—the derivative of a regular expression \(D : \alpha \to \alpha \, \text{RE} \to \alpha \, \text{RE} \) and its lifting to words \(D^* : \alpha \, \text{list} \to \alpha \, \text{RE} \to \alpha \, \text{RE} \)—semantically corresponds to left quotients of regular languages with respect to a fixed letter or word. Just as before, the recursive definition is purely syntactic and the semantic correspondence is established by induction.

\[
\begin{align*}
D_b(0) &= 0 \\
D_b(1) &= 0 \\
D_b(a) &= \text{if } a = b \text{ then } 1 \text{ else } 0 \\
D_b(\ell \cdot s) &= D_b(\ell) + D_b(s) \\
D_b(\ell \land s) &= D_b(\ell) \land D_b(s) \\
D_b(\Pi r) &= \Pi \left(D_b(\ell) \right)
\end{align*}
\]

Lemma 1. Assume \(b \in \Sigma_n \), \(v \in \Sigma_n^* \) and let \(r \) be an \(n \)-wellformed regular expression. Then \(L_n(D_b(r)) = \{ w \mid bw \in L_n(r) \} \) and \(w \ell_n(D_b(r)) \), and consequently \(L_n(D_n^*(r)) = \{ w \mid vw \in L_n(r) \} \) and \(w \ell_n(D_n^*(r)) \).

The projection case introduced some new syntax that deserves some explanation. The preimage \(\pi^- \) applied to a letter \(b \in \Sigma_n \) denotes the set \(\{ c \in \Sigma_n \mid \pi c = b \} \). Our alphabets \(\Sigma_n \) are finite for each \(n \), hence so is the preimage of a letter. The summation \(+ \) over a finite set denotes the iterated application of the +-constructor of regular expressions. The summation over the empty set is defined as \(0 \).

Derivatives of extended regular expressions were introduced by Brzozowski [7] almost fifty years ago. Our contribution is the extension of the concept to handle the projection operation. Since the projection acts homomorphically on words, it is clear that the derivative of \(\Pi r \) with respect to a letter \(b \) can be expressed as a projection of derivatives of \(r \). The concrete definition is a consequence of the following identity of left quotients for \(b \in \Sigma_n \) and \(A \subseteq \Sigma_{n+1}^* \):

\[
\{ w \mid bw \in \text{map } \pi \cdot A \} = \text{map } \pi \cdot \bigcup_{c \in \pi^- b} \{ w \mid cw \in A \}
\]

Although we completely avoid automata in the formalization, a derivative with respect to the letter \(b \) can be seen as a transition labelled by \(b \) in a deterministic automaton, the states of which are labelled by regular expressions. The automaton accepting the language of a regular expression \(r \) can be thus constructed iteratively by exploring all derivatives of \(r \) and defining exactly those states as accepting, which are labelled by a final regular expression. However, the set \(\{ D_n^*(r) \mid w : \alpha \, \text{list} \} \) of states reachable in this manner is infinite in general. To obtain a finite automaton, the states must be partitioned into classes of regular expressions that are ACI-equivalent, i.e. syntactically equal modulo associativity, commutativity and idempotence of the +-constructor. Brzozowski showed that the number of such classes for a fixed regular expression \(r \) is finite by structural induction on \(r \). The inductive steps require proving finiteness by representing equivalence classes of derivatives of the expression in terms of equivalence classes of derivatives of subexpressions. This is technically complicated, especially for concatenation, iteration and projection, since it requires a careful choice representatives of equivalence classes to reason about them, and Isabelle’s automation can not help much with the finiteness arguments—indeed the verification of Theorem 2 constitutes the most intricate proof in the present work.

Theorem 2. \(\{ \{ D_n^*(r) \} \mid w : \alpha \, \text{list} \} \) is finite for any regular expression \(r \).

The function \(\{ - \} : \alpha \, \text{RE} \to \alpha \, \text{RE} \) is the ACI normalization function, which maps ACI-equivalent regular expressions to the same representative. It is defined by means of a normalizing constructor \(\oplus : \alpha \, \text{RE} \to \alpha \, \text{RE} \) and an arbitrary linear order \(\preceq \) on regular expressions.

\[
\begin{align*}
\{ 0 \} &= 0 \\
\{ 1 \} &= 1 \\
\{ a \} &= a \\
\{ r \cdot s \} &= \{ r \} \cdot \{ s \} \\
\{ r^* \} &= \{ r \}^* \\
\{ r \land s \} &= \{ r \} \land \{ s \} \\
\{ \Pi r \} &= \Pi \{ r \}
\end{align*}
\]
$$(r + s) \oplus t = r \oplus (s \oplus t)$$
$$r \oplus (s + t) = \begin{cases} r \oplus s + t & \text{if } r = s \\ r + (s + t) & \text{else if } r \leq s \\ s + (r \oplus t) & \text{else} \end{cases}$$
$$r \oplus s = \begin{cases} r \oplus s & \text{if } r = s \\ r + s & \text{else if } r \leq s \\ s + r & \text{else} \end{cases}$$

The equations for \oplus are matched sequentially.

After the application of \ll all sums in the expression are associated to the right and the summands are sorted with respect to \leq and duplicated summands are removed. From this, further later on useful properties of \ll can be derived:

Lemma 3. Let r be a regular expression, $n \in \mathbb{N}$ and $b \in \Sigma_n$. Then $\mathcal{L}_n(r) = \mathcal{L}_n(r)$, $\ll(r) = \ll(r)$ and $\mathcal{D}_n(b) = \mathcal{D}_n(b)$.

So far, ACI normalization only connects Brzozowski derivatives to deterministic finite automata. Furthermore, it will ensure termination of our decision procedure even without ever entering the world of automata. Instead we follow Rutten [20, §4].

Theorem 5. Let r and s be n-wellformed regular expressions. Then $\mathcal{L}_n(r) = \mathcal{L}_n(s)$ iff we have $\ll(r') = \ll(s')$ for all $(r', s') \in \{(\mathcal{D}_n^*(r)), \mathcal{D}_n^*(s)) \mid w \in \Sigma_n^\ast\}$.

C. Executable Algorithm from a Theorem

Our goal is not only to prove some abstract theorems about a decision procedure, but also to extract executable code in some functional programming language (e.g. Standard ML, Haskell, OCaml) using the code generation facility of Isabelle/HOL [11]. Theorem 5 is not enough to do so: it contains a set comprehension ranging over the infinite set Σ_n^\ast, which is not executable as such. We need to instruct the system how to enumerate $\{(\mathcal{D}_n^*(r)), \mathcal{D}_n^*(s)\mid w \in \Sigma_n^\ast\}$.

We start with the pair $(\ll(r), \ll(s))$ and compute its pairwise derivatives for all letters of the alphabet. For the computed pairs of regular expressions we proceed by computing their derivatives and so on. This of course does not terminate. However, if we stop our exploration at pairs that we have seen before it does, since we are exploring a finite set.

In more detail, we use a worklist algorithm that iteratively adds not yet inspected pairs of regular expressions while exhaustively increasing length until no new pairs are generated. Saturation is reached by means of the executable combinator while $:\ll((a \rightarrow B) \rightarrow (a \rightarrow a) \rightarrow a \rightarrow a \rightarrow a)$ option from the Isabelle/HOL library. The option type α option has two constructors None $:: \alpha$ option and Some $:: \alpha \rightarrow \alpha$ option. Some lifts elements from the base type α to the option type, while None is usually used to indicate some exceptional behaviour.

The definition of while

while $b \cdot c \cdot s = \begin{cases} b \cdot c \cdot s & \text{if } b \cdot c \cdot s \text{ then} \\ \text{None} & \text{else} \end{cases}$

The code generated from this recursion equation will return Some s in case the definition of while says so, but instead of returning None, it will not terminate. Thus we can prove termination if we can show that the result is \neq None.

In our algorithm, the state s of the while loop consists of a worklist ws $(\alpha \rightarrow \alpha \rightarrow a \alpha)$ list of unprocessed pairs of regular expressions together with a set N $(\gamma \rightarrow \gamma)$ set of already seen pairs modulo a normalization function $\ll((a \rightarrow B) \rightarrow (a \rightarrow a) \rightarrow a \rightarrow a \rightarrow a)$ option.

The normalization function (which is a parameter of our setup) is applied to already ACI-normalized expressions, to syntactically identify further language equivalent expressions. This makes the bisimulation relation that must be exhausted smaller, thus saturation is reached faster. The range type of the normalization is not fixed, but we require a notion of languages $\ll((\alpha \rightarrow B) \rightarrow (\alpha \rightarrow a \alpha)$ list) set to be available for it, such that $\ll((\alpha \rightarrow B) \rightarrow (\alpha \rightarrow a \alpha)^\ast) \rightarrow \gamma \rightarrow \gamma$.

The normalization function is in a function of regular expressions that eliminates 0 from unions, concatenations and intersections and 1 from concatenations. Not fixing the range type allows to use different regular structures such as automata or different types of regular expressions, on which further simplifications might be easier.

Finally, we define the functions $\ll((\alpha \rightarrow B) \rightarrow (\alpha \rightarrow B)$ list) set and $\ll((\gamma \rightarrow \gamma)$ set) that are given as arguments to while. A wellformedness check completes the now executable algorithm $\ll((\alpha \rightarrow B) \rightarrow (\alpha \rightarrow B)$ list) set.

$$\begin{align*}
\ll(([])_\gamma) &= \bot \\
\ll((r \cdot s) \# {}_\gamma) &= \ll(r) \ll(s)
\end{align*}$$
procedure performing a breadth-first exploration starting with the initially given pair and ignoring states that are in the equivalence class of already visited states. The absence of pairs \((r, s)\) for which \(r\) is final and \(s\) is not final (or vice versa) proves the equivalence of all pairs in the automaton, including the pair \((a^a, 1 + a \cdot a^a)\).

V. MSO ON FINITE WORDS

Logics on finite words consider formulas in the context of a formal word, with variables representing positions in the word. In the first-order logic on words a variable always denotes a single position, while in monadic second-order logic (MSO) variables come in two flavours: first-order variables for single positions and second-order variables for finite sets of positions.

A. Syntax and Semantics

MSO formulas are syntactically represented by the recursive data type \(\alpha \Phi\) using de Bruijn indices for variable bindings. Terms of \(\alpha \Phi\) are generated by the grammar

\[
\begin{align*}
\varphi & = Q a m \\
& \mid m_1 < m_2 \\
& \mid m \in M \\
& \mid \varphi \land \psi \\
& \mid \varphi \lor \psi \\
& \mid \neg \varphi \\
& \mid \exists \varphi \\
& \mid \exists \varphi
\end{align*}
\]

where \(\varphi, \psi : \alpha \Phi\), \(m, m_1, m_2, M \in \mathbb{N}\) and \(a \in \alpha\). Lower-case variables \(m, m_1, m_2\) denote first-order variables, \(M\) denotes a second order variable. The atomic formula \(Q a m\) requires the letter of the word at the position represented by variable \(m\) to be \(a\); the constructors \(<\) and \(\in\) compare positions; Boolean operators are interpreted as usual.

The bold existential quantifier \(\exists\) binds second-order variables, \(\exists\) binds first-order variables. Occurrences of bound variables represented as de Bruijn indices refer to their binders by counting the number of nested existential quantifier between the binder and the occurrence. For example, the formula \(\exists (Q a \land (\exists X \cdot x \in X))\) corresponds to \(\exists x (Q a \land (\exists X \cdot x \in X))\) when using names. The first 0 in the nameless formula refers to the outermost first-order quantifier. Inside of the inner second-order quantifier, index 1 refers to the outermost quantifier and index 0 to the inner quantifier. The nameless representation simplifies reasoning by implicitly capturing \(\alpha\)-equivalence of formulas. On the downside, de Bruijn indices are less readable and must be manipulated with care.

Formulas may have free variables. The functions \(\nu_1 : \alpha \Phi \to \mathbb{N}\) and \(\nu_2 : \alpha \Phi \to \mathbb{N}\) set the free first-order and second-order variables:

\[
\begin{align*}
\nu_1(Q a m) &= \{m\} \\
\nu_2(Q a m) &= \{\}
\end{align*}
\]

\[
\begin{align*}
\nu_1(m_1 < m_2) &= \{m_1, m_2\} \\
\nu_2(m_1 < m_2) &= \{\}
\end{align*}
\]

\[
\begin{align*}
\nu_1(m \in M) &= \{m\} \\
\nu_2(m \in M) &= \{M\}
\end{align*}
\]

\[
\begin{align*}
\nu_1(\varphi \land \psi) &= \nu_1(\varphi) \cup \nu_1(\psi) \\
\nu_2(\varphi \land \psi) &= \nu_2(\varphi) \cup \nu_2(\psi) \\
\nu_1(\varphi \lor \psi) &= \nu_1(\varphi) \cup \nu_1(\psi) \\
\nu_2(\varphi \lor \psi) &= \nu_2(\varphi) \cup \nu_2(\psi) \\
\nu_1(\neg \varphi) &= \nu_1(\varphi) \\
\nu_2(\neg \varphi) &= \nu_2(\varphi) \\
\nu_1(\exists \varphi) &= \nu_1(\varphi) \setminus \{0\} \\
\nu_2(\exists \varphi) &= \nu_2(\varphi) \setminus \{0\}
\end{align*}
\]
The notation \([X]\) is shorthand for \((\lambda x. x - 1) \cdot X\), which reverts the increasing effect of an existential quantifier on previously bound or free variables. To obtain only free variables, bound variables are removed when their quantifier is processed, at which point the bound variable has index 0.

Just as for \(\Pi\)-extended regular expressions, not all formulas in \(\alpha \Phi\) are meaningful. Consider \(\emptyset \in 0\), where 0 is both a first-order and a second-order variable. To exclude such formulas, we define the predicate \(\text{wf}^\Phi : \mathbb{N} \to \alpha \Phi \to \mathbb{B}\) as \(\text{wf}^\Phi(\varphi) = (\forall_1(\varphi) \land \forall_2(\varphi) = \{\}) \land \text{pre}_\varphi(\varphi)\) and call a formula \(\varphi\) \(n\)-wellformed if \(\text{wf}^\Phi\) holds. The recursively defined predicate \(\text{pre}_\varphi : \mathbb{N} \to \alpha \Phi \to \mathbb{B}\) is used for further assumptions on the structure of \(n\)-wellformed formulas, which will simplify our proofs:

- \(\text{pre}_\varphi(\text{Qam}) = a \in \Sigma \land m < n\)
- \(\text{pre}_\varphi(a_1 < a_2) = m_1 < n \land m_2 < n\)
- \(\text{pre}_\varphi(m \in M) = m < n \land M < n\)
- \(\text{pre}_\varphi(\varphi \land \psi) = \text{pre}_\varphi(\varphi) \land \text{pre}_\varphi(\psi)\)
- \(\text{pre}_\varphi(\varphi \lor \psi) = \text{pre}_\varphi(\varphi) \lor \text{pre}_\varphi(\psi)\)
- \(\text{pre}_\varphi(\varphi \Rightarrow \psi) = \text{pre}_\varphi(\varphi) \lor \text{pre}_\varphi(\psi)\)
- \(\text{pre}_\varphi(3 \varphi) = \text{pre}_\varphi(\forall_1(\varphi) \land 0 \in \forall_1(\varphi) \land 0 \notin \forall_2(\varphi)\)
- \(\text{pre}_\varphi(\exists \varphi) = \text{pre}_\varphi(\forall_1(\varphi) \land 0 \notin \forall_1(\varphi) \lor 0 \in \forall_2(\varphi)\)

\(\text{pre}_\varphi(\varphi)\) ensures that the index of every free variable in \(\varphi\) is below \(n\) and the values of type \(\alpha\) come from a fixed alphabet \(\Sigma\). Note that \(\Sigma\) is really just a fixed set of letters of type \(\alpha\), independent of any \(n\) and is a parameter of our setup. Moreover, \(\text{pre}_\varphi\) checks that bound variables are correctly used as first-order or second-order with respect to their binders and excludes formulas with unused binders; unused binders are obviously superfluous.

An interpretation of an MSO formula is a pair of a word \(w : \alpha\) list from \(\Sigma^*\) and an assignment \(\mathcal{I} :: (\mathbb{N} + \mathbb{N}\text{set})\) list for free variables. The latter essentially consists of two functions with finite domain: one from first-order variables to positions and the other from second-order variables to sets of positions. We represent those to functions by a list, once again benefiting from de Bruijn indices—the value lookup for a variable with de Bruijn index \(i\) corresponds to inspecting the assignment \(\mathcal{I}\) at position \(i\), i.e. \(\mathcal{I}[i]\). The range of \(\mathcal{I}\) is a sum type, denoting the disjoint union of its two argument types. The sum type has two constructors \(\text{Inl} :: \alpha \to \alpha \beta\) and \(\text{Inr} :: \beta \to \alpha \beta\), such that for a first-order variable \(m\) there is a position \(p\) with \(\mathcal{I}[m] = \text{Inl} p\) and for a second-order variable \(M\) there is a finite set of positions \(P\) with \(\mathcal{I}[M] = \text{Inr} P\).

An interpretation that satisfies a formula is called a model. Satisfiability, denoted by \(\text{infix} \iff :: (\mathbb{N} + \mathbb{N}\text{set})\) list \(\alpha \Phi \to \mathbb{B}\), is defined recursively on \(\alpha \Phi\). To simplify the notation, the sum constructors \(\text{Inl}\) and \(\text{Inr}\) are stripped implicitly in the definition:

\[
\begin{align*}
(w, \mathcal{I}) = \text{Qam} & \iff w[\mathcal{I}[m]] = a \\
(w, \mathcal{I}) = m_1 < m_2 & \iff [\mathcal{I}[m_1] < [\mathcal{I}[m_2] \\
(w, \mathcal{I}) = m \in M & \iff [\mathcal{I}[m] \in [\mathcal{I}[M] \\
(w, \mathcal{I}) = \varphi \land \psi & \iff (w, \mathcal{I}) = \varphi \land (w, \mathcal{I}) = \psi \\
(w, \mathcal{I}) = \varphi \lor \psi & \iff (w, \mathcal{I}) = \varphi \lor (w, \mathcal{I}) = \psi \\
(w, \mathcal{I}) = -\varphi & \iff (w, \mathcal{I}) \neq \varphi \\
(w, \mathcal{I}) = 3 \varphi & \iff 3p \in \{0, \ldots, |w| - 1\}. (w, \text{Inl} p \# \mathcal{I}) = \varphi \\
(w, \mathcal{I}) = \exists \varphi & \iff 3p \in \{0, \ldots, |w| - 1\}. (w, \text{Inr} P \# \mathcal{I}) = \varphi
\end{align*}
\]

For the definition to make sense, \(\mathcal{I}\) must correctly map first-order variables to positions (i.e. \(\mathcal{I}[m] = \text{Inl} p\)) and second-order variables to sets of positions (i.e. \(\mathcal{I}[M] = \text{Inr} P\)). Furthermore, all positions in \(\mathcal{I}\) should be below the length of the word, and for technical reasons the word should not be empty. We formalize these assumptions by the predicate \(\text{suit}_{\varphi}(w, \mathcal{I})\) holds:

\[
\text{suit}_{\varphi}(w, \mathcal{I}) =
\begin{align*}
&w \neq [] \land w \in \Sigma^* \\
&\forall \text{Inl} p \in \text{set} \mathcal{I}. p < |w| \\
&\forall \text{Inr} P \in \text{set} \mathcal{I}. \forall p \in P. p < |w| \\
&\forall m \in \forall_1(\varphi) \land (\exists p. \mathcal{I}[m] = \text{Inl} p) \\
&\forall M \in \forall_2(\varphi) \land (\exists P. \mathcal{I}[M] = \text{Inr} P)
\end{align*}
\]
In a suitable model, positions are restricted by the length of the word. This is the key difference of our logic compared to WS1S. In WS1S no a priori restrictions on the variable ranges are made, although all second-order variables represent finite sets. The subtle difference is illustrated by the formula $\exists (\forall \in 1)$, where $\forall \varphi$ is just an abbreviation for $\neg \exists \neg \varphi$. In our semantics $\exists (\forall \in 1)$ is satisfied by all suitable interpretations—the witness set for the outermost existential quantifier is for a suitable interpretation (w, I) just the set $\{0, \ldots, |w| - 1\}$. In contrast, with the semantics of WS1S, there is no finite set which contains all arbitrarily large positions, thus $\exists (\forall \in 1)$ is unsatisfiable. However, both semantics are equally expressive and deciding both is of nonelementary complexity. The benefits and drawbacks of the two semantics are discussed elsewhere [3], [14].

B. Encoding Interpretations as Words

Formulas are equivalent if they have the same set of suitable models. To relate equivalent formulas with language equivalent regular expressions, the set of suitable models must be represented as a formal language by encoding interpretations as words. To simplify the formalization, we choose a very simple encoding using Boolean vectors. For an interpretation (w, I), we associate with every position p in the word w a Boolean vector bs of length $|I|$, such that $bs[m] = \top$ iff the mth variable in I is first-order and its value is p or it is second-order and its value contains p. For example, for $\Sigma = \{a, b\}$ the interpretation $(w, I) = (aba, \text{Inl 0 \# Inr \{1, 2\} \# Inl 2 \# 1\})$ can be written in two dimensions as follows:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inl 0</td>
<td>†</td>
<td>†</td>
<td>†</td>
</tr>
<tr>
<td>Inr {1,2}</td>
<td>†</td>
<td>†</td>
<td>†</td>
</tr>
<tr>
<td>Inl 2</td>
<td>†</td>
<td>†</td>
<td>†</td>
</tr>
</tbody>
</table>

In the first row, the value \top is placed only in the first column because the first variable of I is the first-order position 0. In general, the columns correspond to the Boolean vectors associated with positions in the word, while every row corresponds to one variable. For first-order variables there must be exactly one \top per row. The first row encodes the value of the most recently bound variable. Now, we consider every column as a letter of a new alphabet, which is the underlying alphabet $\Sigma_n = \Sigma \times \mathbb{B}^n$ of regular expressions of Section IV. This transformation of interpretations into words over Σ_n is performed by the function $\text{enc}: \text{a list} \times (\mathbb{N} \times \mathbb{N} \text{set}) \text{list} \to (\Sigma \times \mathbb{B} \text{list}) \text{list}$; we omit its obvious definition.

Furthermore, the second parameter $\pi : : \Sigma_{n+1} \to \Sigma_n$ of our decision procedure for regular expressions can now be instantiated as the function that maps $(a, b \# \# b)$ to (a, b), thus, the projection Π operates on words by removing the first row from words in the language of the body expression, reflecting the semantics of an existential quantifier.

Below we use a more visually appealing notation for elements of Σ_n. E.g. $(a, \top \# \bot \# \bot \# 0)$ is written as

\[
\begin{pmatrix}
 a \\
 \top \bot \bot
\end{pmatrix}.
\]

Finally, the language $L^\Phi \subseteq \mathbb{N} \to \alpha \Phi \to (\alpha \times \mathbb{B} \text{ list})$ set of an MSO formula is the set of encodings of its suitable models, i.e. $L^\Phi_n(\varphi) = \{\text{enc}(w, I) | \text{suits}_n(w, I) \land |I| = n \land (w, I) = \varphi\}$.

C. From Formulas to Regular Expressions

MSO formulas are translated into regular expressions by means of the primitive recursive function $\text{RE}_{\phi}: \mathbb{N} \to \alpha \Phi \to \alpha \text{RE}$ (see Figure 2). The natural number parameter of RE_{ϕ} indicates the number for free variables for the processed formula. The parameter is increased when entering recursively the scope of an existential quantifier. In general, the abbreviation

\[
\bigoplus_{(\alpha \phi \in \mathbb{X}) \in (\top \bot \top \bot)}^{a \in X}
\]

actually denotes the huge summation

\[
\bigoplus_{(\alpha \phi \in \mathbb{X}) \in (\top \bot \top \bot)}^{a \in X}
\]

The intuition behind the translation is demonstrated by the case Qam. We fix a suitable model (w, I) of Qam. (w, I) must satisfy $w[I[m]] = a$, or equivalently the fact that there exists a Boolean vector bs of length n such that $\text{enc}(w, I)[I[m]] = (a, bs)$ and $bs[m] = \top$. Therefore, the letter at position $I[m]$ of $\text{enc}(w, I)$ is matched by the “middle” part of $\text{RE}_{\phi}(Qam)$, while the subexpressions $\top \bot 0$ (which denotes Σ_n^+) match the first $I[m]$ and the last $n - I[m]$ letters of $\text{enc}(w, I)$.

Conversely, if we fix a word from $\text{RE}_{\phi}(Qam)$, it will be equal to an encoding of an interpretation that satisfies Qam by a similar argument. However, the interpretation might not be suitable for Qam. This happens because the regular expression $\text{RE}_{\phi}(Qam)$ does not capture the distinction between first-order and second-order variables, such that it accepts encodings of interpretations that have the value \top more than once at different positions representing the same first-order variable. This indicates that the subexpressions $\neg 0$ in the base cases are not precise enough, but also in the case of Boolean operators similar issues arise. So instead of tinkering with the base cases, it is better to separate the generation a regular expression that encodes models from the one that encodes suitable interpretations.

To rule out unsuitable interpretations is exactly the purpose of the $\text{ENC} : \mathbb{N} \to \alpha \Phi \to \alpha \text{RE}$ function. The regular expression $\text{ENC}_n(\varphi)$ (see Figure 2) accepts exactly the encodings of suitable interpretations (both models and non-models) for φ by ensuring that first-order variables are encoded correctly.

Lemma 9. Let φ be an n-wellformed formula. Then $L^\Phi_n(\text{ENC}_n(\varphi)) \setminus \{\varphi\} = \{\text{enc}(w, I) \mid \text{suits}_n(w, I) \land |I| = n\}$.

Using ENC in every case of the recursive definition of RE_{ϕ} is very redundant—it is enough to perform the intersection once globally for the entire formula and additionally for every existential quantifier. Finally, we can establish the
Theorem 10. Let \(\varphi \) be an n-wellformed formula. Then
\[
\mathcal{L}_n^\Phi(\varphi) = \mathcal{L}_n(\text{RE}_n(\varphi) \cap \text{ENC}_n(\varphi)) \setminus \{[]\}.
\]

The proof is by structural induction on \(\varphi \). Above we have seen the argument for the base case \(Q \rightarrow m \), other base cases follow similarly. The cases \(\exists \varphi \) and \(\forall \varphi \) follow easily from the semantics of \(\Pi \) given by our concrete instantiation for \(\pi \) and \(\Sigma_n \) and the induction hypothesis. The most interesting cases are, somehow unexpectedly, those for Boolean operators. Although the definitions are purely structural, sets of encodings of models must be composed or, even worse, complemented in the inductive steps. The key property required here is that \(\text{enc} \) does not collapse models and non-models: two different suitable interpretations for a formula—one being a model, the other being a non-model—are encoded into different words. This is again established by structural induction on formulas.

Lemma 11. Let \((\omega_1, I_1)\) and \((\omega_2, I_2)\) be two suitable interpretations for \(\varphi \). Further, assume \(\text{enc}(\omega_1, I_1) = \text{enc}(\omega_2, I_2) \). Then \((\omega_1, I_1) \equiv \varphi \leftrightarrow (\omega_2, I_2) \equiv \varphi \).

D. Deciding Language Equivalence of Formulas

The algorithm \(\text{eqv}^\Phi : \mathcal{N} \rightarrow \alpha \Phi \rightarrow \alpha \Phi \rightarrow \mathcal{B} \) that decides language equivalence of MSO formulas checks wellformedness of the input formulas, translates the formulas into regular expressions and lets \(\text{eqv}^\Phi \) do the work:

\[
\text{eqv}^\Phi(\varphi \psi) = \\
\text{w}_n^\Phi(\varphi \psi) \land \\
\text{eqv}^\Phi(\text{RE}_n(\varphi) + 1) (\text{RE}_n(\varphi) + 1)
\]

Note that wellformedness is checked on the disjunction of both formulas to ensure that they agree on free variables (i.e. no first-order free variable of \(\varphi \) is used as a second-order free variable in \(\psi \) and vice versa). Further, we add the empty word into both regular expressions. This is allowed, since \([] \) is not a valid encoding of an interpretation, and necessary because Theorem 10 does not give us any information whether the empty word is contained in the output of \(\text{RE}_n \) or not.

Termination of \(\text{eqv}^\Phi \) is ensured by Theorem 6 and the definition principle of primitive recursion for \(\text{w}_n \) and \(\text{RE}_n \). Soundness and completeness follow easily from Theorems 7, 8 and 10.

Theorem 12 (Soundness). Let \(\varphi \) and \(\psi \) be MSO formulas such that \(\text{eqv}^\Phi(\varphi \psi) \). Then \(\mathcal{L}_n^\Phi(\varphi) = \mathcal{L}_n(\psi) \).

Theorem 13 (Completeness). Let \(\varphi \psi \) be an n-wellformed MSO formula and assume \(\mathcal{L}_n^\Phi(\varphi) = \mathcal{L}_n(\psi) \). Then \(\text{eqv}^\Phi(\varphi \psi) \).

VI. APPLICATION: FINITE-WORD LTL

We want to execute the code generated by Isabelle/HOL for our decision procedure on some larger examples. It is helpful to introduce some syntactic abbreviations. We define the unsatisfiable formula \(\bot \) as \(\exists x < 0 \) and the valid formula \(\top \) as \(\neg \bot \). Now, checking that a formula is a valid amounts to

\[
\text{RE}_n(Q am) = - \bullet \left(\frac{\{a\}}{m} \right) \to 0
\]

\[
\text{RE}_n(m_1 < m_2) = - \bullet \left(\frac{\Sigma}{m_1} \right) \to \left(\frac{\Sigma}{m_2} \right) \to 0
\]

\[
\text{RE}_n(m \in M) = - \bullet \left(\frac{\Sigma}{\min m M} \right) \to \left(\frac{\Sigma}{\max m M - \min m M - 1} \right) \to 0
\]

\[
\text{RE}_n(\varphi \land \psi) = \text{RE}_n(\varphi) \land \text{RE}_n(\psi)
\]

\[
\text{RE}_n(\varphi \lor \psi) = \text{RE}_n(\varphi) \lor \text{RE}_n(\psi)
\]

\[
\text{RE}_n(\neg \varphi) = \neg \text{RE}_n(\varphi)
\]

\[
\text{RE}_n(\exists \varphi) = \Pi(\text{RE}_{n+1}(\varphi) \land \text{ENC}_{n+1}(\varphi))
\]

\[
\text{RE}_n(\forall \varphi) = \Pi(\text{RE}_{n+1}(\varphi) \land \text{ENC}_{n+1}(\varphi))
\]

\[
\text{ENC}_n(\varphi) = \bigcap_{n \in \mathcal{N}_n(\varphi)} \left(\frac{\Sigma}{m} \right) \to \left(\frac{\Sigma}{n - m - 1} \right) \to \left(\frac{\Sigma}{m} \right) \to \left(\frac{\Sigma}{n - m - 1} \right)
\]

Fig. 2. Definition of \(\text{RE}_n \) and \(\text{ENC} \)
checking its equivalence to \(T \). Implication \(\varphi \rightarrow \psi \) is defined as \((\neg \varphi) \lor \psi\) and universal quantification \(\forall \varphi \) as before as \(\neg \exists \psi \neg \varphi \). Next, we introduce temporal logical operators always \(\Box P : \mathbb{N} \to \alpha \Phi \) and eventually \(\Diamond P : \mathbb{N} \to \alpha \Phi \) depending on \(P : \mathbb{N} \to \alpha \Phi \)—a formula parameterized by a single variable indicating the time. The operators have their usual meaning except that with the given MSO semantics the time variable ranges over a fixed set determined by the interpretation. Additionally, we lift the disjunction and implication to time-parameterized formulas.

\[
\Box P t = \forall (\neg t + 1 < 0 \lor P 0)
\]

\[
\Diamond P t = \exists (\neg t + 1 < 0 \land P 0)
\]

\[
(P \Rightarrow Q) t = P t \Rightarrow Q t
\]

\[
(P \land Q) t = P t \land Q t
\]

Note that \(t + 1 \) has nothing to do with the next time step. It is just the lifting of the de Bruijn index under a single quantifier.

Further, formulas of linear temporal logical contain atomic predicates for which the interpretation must specify at which points in time they are true. This information can be encoded in two ways, which we compare in the following.

The first possibility is to encode atomic predicates in the word of the interpretation. This is done by identifying \(\Sigma \) with the powerset \(\mathcal{P} \) of atomic predicates. For every point in time, that is for every position in the word, the letter is the set of predicates that are true at this point. Using this encoding we can prove the validity of the following closed formulas over the alphabet \(\mathcal{P}\{P\} = \{\{P\}, \emptyset\} \) automatically within a few milliseconds.

\[
\forall (\Box (Q\{P\}) \Rightarrow \Diamond (Q\{P\})) 0
\]

\[
\forall (\Box (Q\{P\}) \Rightarrow \Box \Diamond (Q\{P\})) 0
\]

Alternatively, a free second-order variable can be used to encode an atomic predicates directly. The variable denotes the set of points in time for which the atomic predicate holds. The alphabet \(\Sigma \) can then be trivial, i.e. \(\Sigma = \{a\} \) for an arbitrary \(a \). Using this encoding the above two formulas correspond to

\[
\forall (\Box (\lambda t. t.e 2) \Rightarrow \Diamond (\lambda t. t.e 2)) 0
\]

\[
\forall (\Box (\lambda t. t.e 2) \Rightarrow \Box \Diamond (\lambda t. t.e 3)) 0
\]

Both formulas have one free second-order variable \(0 \) that is lifted when passing two or three quantifiers. The generated algorithm shows the equivalence to \(T \) again within milliseconds.

In order to explore the limits of our decision procedure, formulas over more atomic predicates are required. Therefore, we consider the distributivity theorems of \(\Box \) over implication for both representations of atomic predicates as shown in Figure 3. When the number of predicates \(n \) is increased, the size of \(\varphi_n \) grows exponentially: to express that a predicate \(P \) holds at some position we need the disjunction of all atoms containing \(P \). In contrast, the size of \(\psi_n \) grows linearly. The complexity of \(\psi_n \) is hidden in its encoding—the latter also grows exponentially with increasing \(n \). The running times of the decision procedure are summarized in Figure 4. Thereby, \(\psi_1, \psi_2 \) and \(\psi_3 \) were processed over \(\Sigma = \{a\} \), \(\varphi_1 \) was processed over \(\Sigma = \mathcal{P}\{P\}, \varphi_2 \) over \(\Sigma = \mathcal{P}\{P_1, P_2\} \) and finally \(\varphi_3 \) over \(\Sigma = \mathcal{P}\{P_1, P_2, P_3\} \). Figure 4 also shows the sizes of the generated regular expressions. Both size and \(\text{size}_{\text{en}} \) count the constructors in a regular expression. The difference is that the size of an atom is 1 whereas the \(\text{size}_{\text{en}} \) of an atom is the length of its Boolean vector.

The attentive reader will have noticed that we have said nothing about how sets are represented in the code generated from our mathematical definitions. We have chosen an existing verified red–black tree implementation for our measurements. Isabelle’s code generator supports the transparent replacement of sets by some verified implementation.

The performance of our automatically generated code may appear disappointing but that would be a misunderstanding of our intentions. We see our work primarily as a theoretical contribution that may pave the way towards verified and efficient decision procedures. As a bonus, the generated code is applicable to small examples. In the context of interactive theorem proving, this is primarily what one encounters: small formulas. Any automation is welcome here because it saves the user time and effort. Automatic verification of larger systems is the domain of highly tuned implementations such as MONA.

VII. CONCLUSION

We have formalized an algorithm that decides equivalence of MSO formulas in Isabelle/HOL. The formalization comes with proofs of termination, soundness and completeness. The algorithm operates by translating formulas into \(\Pi \)-extended regular expressions and deciding the language equivalence of the latter using Brzozowski derivatives. Our formalized specification of the algorithm is executable—Isabelle/HOL generates code for it in different functional target languages automatically. The development amounts to roughly 3700 lines of specifications and proofs, of which 2100 lines are devoted to deciding equivalence of \(\Pi \)-extended regular expressions. The formal scripts are publicly available [22].

Our work can be continued in two dimensions. First, the algorithm is not optimized. Especially the encoding of interpretations as Boolean vectors leaves room for improvement.

Second, several related decidable logics can be formalized and verified using similar technology. The closest relative of MSO on finite words is WS1S. We expect that the modifications of our algorithm required to support WS1S, notably the translation of formulas into regular expressions, are minor. However, the proofs will also need some adjustments. Another related logic is MSO on infinite words (also called S1S). As opposed to finite words there is no semantic difference between S1S and MSO on infinite words. S1S formulas can be translated into \(\omega \)-regular expressions representing \(\omega \)-regular languages. A verified decision procedure for deciding equivalence of \(\omega \)-regular expressions without constructing \(\omega \)-automata is an interesting challenge. An even more distant goal is to move from words to trees (or even from \(\omega \)-words to \(\omega \)-trees) and decide equivalence of MSO formulas on (in)finite trees (or alternatively (W)S2S formulas) by translating them into (\(\omega \))-regular tree expressions.
\[\varphi_1 = \forall (\Box (Q(P)) \Rightarrow \Box (Q(P))) 0 \]
\[\varphi_2 = \forall (\Box (Q(P_1) \otimes Q(P_1, P_2) \Rightarrow Q(P_2) \otimes Q(P_1, P_2)) \Rightarrow \Box (Q(P_1) \otimes Q(P_1, P_2)) \Rightarrow \Box (Q(P_2) \otimes Q(P_1, P_2))) 0 \]
\[\varphi_3 = \forall (\Box (Q(P_1) \otimes Q(P_1, P_2) \otimes Q(P_1, P_3) \otimes Q(P_1, P_2, P_3) \Rightarrow \Box (Q(P_1) \otimes Q(P_1, P_2) \otimes Q(P_1, P_3) \otimes Q(P_1, P_2, P_3)) \Rightarrow \Box (Q(P_2) \otimes Q(P_1, P_2) \otimes Q(P_1, P_3) \otimes Q(P_1, P_2, P_3))) 0 \]

\[\psi_1 = \forall (\Box (At.t \epsilon 2) \Rightarrow \Box (At.t \epsilon 2)) 0 \]
\[\psi_2 = \forall (\Box (At.t \epsilon 2 \Rightarrow t \epsilon 3) \Rightarrow \Box (At.t \epsilon 2) \Rightarrow \Box (At.t \epsilon 3)) 0 \]
\[\psi_3 = \forall (\Box (At.t \epsilon 2 \Rightarrow t \epsilon 3 \Rightarrow t \epsilon 4) \Rightarrow \Box (At.t \epsilon 2) \Rightarrow \Box (At.t \epsilon 3) \Rightarrow \Box (At.t \epsilon 4)) 0 \]

Fig. 3. Definition of \(\varphi_n \) and \(\psi_n \)

<table>
<thead>
<tr>
<th>Time to prove (\varphi_n)</th>
<th>Time to prove (\psi_n)</th>
<th>size (RE_of((\varphi_n)))</th>
<th>size (RE_of((\psi_n)))</th>
<th>size_min (RE_of((\varphi_n)))</th>
<th>size_min (RE_of((\psi_n)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=1</td>
<td>2ms</td>
<td>2ms</td>
<td>262</td>
<td>262</td>
<td>330</td>
</tr>
<tr>
<td>n=2</td>
<td>2s</td>
<td>2s</td>
<td>741</td>
<td>960</td>
<td>949</td>
</tr>
<tr>
<td>n=3</td>
<td>81min</td>
<td>44min</td>
<td>1920</td>
<td>1836</td>
<td>2480</td>
</tr>
</tbody>
</table>

Fig. 4. Comparison of \(\varphi_n \) and \(\psi_n \)

Acknowledgments: We thank Alexander Krauss for inspiring discussions and Jasmin Christian Blanchette for numerous comments on the presentation.

References:

10