Semantics of Programming Languages
Exercise Sheet 4

Exercise 4.1 Reflexive Transitive Closure

A binary relation is expressed by a predicate of type \(R :: 's \Rightarrow 's \Rightarrow \text{bool} \). Intuitively, \(R s t \) represents a single step from state \(s \) to state \(t \).

The reflexive, transitive closure \(R^* \) of \(R \) is the relation that contains a step \(R^* s t \), iff \(R \) can step from \(s \) to \(t \) in any number of steps (including zero steps).

Formalize the reflexive transitive closure as an inductive predicate:

\[
\text{inductive star} :: (\forall 's \Rightarrow 's \Rightarrow \text{bool}) \Rightarrow 's \Rightarrow 's \Rightarrow \text{bool}
\]

When doing so, you have the choice to append or prepend a step. In any case, the following two lemmas should hold for your definition:

lemma star_prepend: \([[r x y; \text{star} r y z]] \Rightarrow \text{star} r x z\)

lemma star_append: \([[\text{star} r x y; r y z]] \Rightarrow \text{star} r x z\)

Now, formalize the star predicate again, this time the other way round:

\[
\text{inductive star'} :: (\forall 'a \Rightarrow 'a \Rightarrow \text{bool}) \Rightarrow 'a \Rightarrow 'a \Rightarrow \text{bool}
\]

Prove the equivalence of your two formalizations:

lemma \("\text{star} r x y = \text{star}' r x y\"

Exercise 4.2 Avoiding Stack Underflow

A stack underflow occurs when executing an instruction on a stack containing too few values – e.g., executing an \(\text{ADD} \) instruction on an stack of size less than two. A well-formed sequence of instructions (e.g., one generated by \(\text{comp} \)) should never cause a stack underflow.

In this exercise, you will define a semantics for the stack-machine that throws an exception if the program underflows the stack.

Modify the \(\text{exec1} \) and \(\text{exec} \) - functions, such that they return an option value, \(\text{None} \) indicating a stack-underflow.
fun exec1 :: "instr ⇒ state ⇒ stack ⇒ stack option"
fun exec :: "instr list ⇒ state ⇒ stack ⇒ stack option"

Now adjust the proof of theorem exec_comp to show that programs output by the compiler never underflow the stack:

theorem exec_comp: "exec (comp a) s stk = Some (aval a s ≠ stk)"

Exercise 4.3 A Structured Proof on Relations

We consider two binary predicates T and A and assume that T is total, A is antisymmetric and T is a subset of A. Show with a structured, Isar-style proof that then A is also a subset of T:

assumes "∀ x y. T x y ∨ T y x"

and "∀ x y. A x y ∧ A y x ⟹ x = y"

and "∀ x y. T x y ⟹ A x y"

shows "A x y ⟹ T x y"

General homework instructions

All proofs in the homework must be carried out in Isar style.

Remember that induction proofs start as follows in Isar:

proof (induction x arbitrary: y)

You will then see a clickable suggestion in the Output panel that will insert the proof template into the theory.

Similarly, a proof by case distinction starts as follows:

proof (cases x)

Again, there will be a clickable suggestion in the Output panel.

Homework 4.1 Relational Addition

Submission until Tuesday, November 21, 10:00am.

Define an inductive predicate `plus` of type `nat ⇒ nat ⇒ nat ⇒ bool` such that the following properties hold.

inductive plus :: "nat ⇒ nat ⇒ nat ⇒ bool" **where**

lemma plus_zero: "plus 0 m m"

lemma zero_plus: "plus m 0 m"

lemma plus_comm: "plus m n k ⟹ plus n m k"

Also prove that `plus` is equivalent to `op +` on natural numbers. You are not allowed to use the proof below for the properties above.

Hint: Consider proving both directions separately.
lemma “plus m n k \iff m + n = k”

Homework 4.2 Avoiding Stack Underflow (II)

Submission until Tuesday, November 21, 10:00am.

In the tutorial, we have defined a modified version of the exec function that returns None if the stack is not large enough. However, this function actually executes the instructions. Sometimes, we cannot pay this cost: Here, we want to detect this situation statically. Define a function can_execute that, given an initial stack size and a list of instructions, returns a bool indicating whether a stack underflow will occur.

fun can_execute :: “nat ⇒ instr list ⇒ bool”

Prove that the function correctly analyzes stack underflow behaviour.

lemma “exec is s stk = Some stk′ ⇒ can_execute (length stk) is”

(Strictly speaking, this is only one of the two necessary directions for correctness. For the purpose of the homework, the above direction is sufficient. The other direction is more difficult and will earn you three bonus points if solved.)

Homework 4.3 Avoiding Stack Underflow (III)

Submission until Tuesday, November 21, 10:00am.

Define a relational version of exec1 and exec. Leave the cases in which the stack would underflow undefined.

inductive exec1r :: “instr ⇒ state ⇒ stack ⇒ stack ⇒ bool”
inductive execr :: “instr list ⇒ state ⇒ stack ⇒ stack ⇒ bool”

Prove equivalence.

lemma exec1r_equiv1: “exec1r i s stk stk′ ⇒ exec1 i s stk = Some stk′”
lemma exec1r_equiv1: “execr is s stk stk′ ⇒ exec is s stk = Some stk′”
lemma exec1r_equiv2: “exec1 i s stk = Some stk′ ⇒ exec1r i s stk stk′”
lemma execr_equiv2: “exec is s stk = Some stk′ ⇒ execr is s stk stk′”