Semantics of Programming Languages
Exercise Sheet 5

Exercise 5.1 Program Equivalence

Let Or be the disjunction of two bexps:

definition $\text{Or} :: \text{bexp} \Rightarrow \text{bexp} \Rightarrow \text{bexp}$ **where**

$\text{Or } b_1 b_2 = \neg (\neg b_1 \land \neg b_2)$

Prove or disprove (by giving counterexamples) the following program equivalences.

1. $\text{IF } \text{And } b_1 b_2 \text{ THEN } c_1 \text{ ELSE } c_2 \sim \text{IF } b_1 \text{ THEN } \text{IF } b_2 \text{ THEN } c_1 \text{ ELSE } c_2 \text{ ELSE } c_2$

2. $\text{WHILE } \text{And } b_1 b_2 \text{ DO } c \sim \text{WHILE } b_1 \text{ DO } \text{WHILE } b_2 \text{ DO } c$

3. $\text{WHILE } \text{And } b_1 b_2 \text{ DO } c \sim \text{WHILE } b_1 \text{ DO } c; \text{WHILE } b_1 b_2 \text{ DO } c$

4. $\text{WHILE } \text{Or } b_1 b_2 \text{ DO } c \sim \text{WHILE } \text{Or } b_1 b_2 \text{ DO } c; \text{WHILE } b_1 \text{ DO } c$

Exercise 5.2 Nondeterminism

In this exercise we extend our language with nondeterminism. We will define **nondeterministic choice** ($c_1 \text{ OR } c_2$), that decides nondeterministically to execute c_1 or c_2; and **assumption** ($\text{ASSUME } b$), that behaves like SKIP if b evaluates to true, and returns no result otherwise.

1. Modify the datatype com to include the new commands OR and ASSUME.

2. Adapt the big step semantics to include rules for the new commands.

3. Prove that $c_1 \text{ OR } c_2 \sim c_2 \text{ OR } c_1$.

4. Prove: $(\text{IF } b \text{ THEN } c_1 \text{ ELSE } c_2) \sim ((\text{ASSUME } b; \ c_1) \text{ OR } (\text{ASSUME } (\neg b); \ c_2))$

Note: It is easiest if you take the existing theories and modify them.
Exercise 5.3 Deskip

Define a recursive function

fun deskip :: “com ⇒ com”

that eliminates as many SKIPs as possible from a command. For example:

deskip (SKIP;; WHILE b DO (x ::= a;; SKIP)) = WHILE b DO x ::= a

Prove its correctness by induction on c:

lemma
assumes “(WHILE b DO c, s) ⇒ t” and “∀ s t. (c, s) ⇒ t −→ (c′, s) ⇒ t”

shows “(WHILE b DO c′, s) ⇒ t”

lemma “deskip c ∼ c”

Homework 5.1 Functional Small-Step

Submission until Monday, Nov 25, 10:00am.

Specify a functional version of the small-step semantics as function small with the following signature:

fun small :: “com * state ⇒ (com * state) option” where

Prove that it is indeed equivalent to the small-step semantics:

theorem “(c, s) → (c′, s′) ←→ small (c, s) = Some (c′, s′)”

Now define a version of small that corresponds to →*. That is, define a function smalls with the following signature where the first argument gives an upper bound on the number of execution steps:

fun smalls :: “nat ⇒ com * state ⇒ (com * state) option” where

Again prove that the two semantics are equivalent:

theorem smalls_small_steps_equiv:
“(∃ s′. (c, s) →∗ (c′, s′)) ←→ (if c′ = SKIP then
 (∃ n. smalls n (c, s) = None)
 else
 (∃ n s′. smalls n (c, s) = Some (c′, s′))
)”
Homework 5.2 Nondeterminism

Submission until Monday, Nov 25, 10:00am.

We again consider the extension of IMP with nondeterminism from the tutorial. This time, first extend the small-step semantics with the new constructs:

inductive small_step :: “com * state ⇒ com * state ⇒ bool” (infix “→” 55)

where
Assign: “(x ::= a, s) → (SKIP, s(x := aval a s))” |
Seq1: “(SKIP;c2,s) → (c2,s)” |
Seq2: “(c1,s) → (c1′,s′) ⇒ (c1;c2,s) → (c1′;c2,s′)” |
IfTrue: “bval b s ⇒ (IF b THEN c1 ELSE c2,s) → (c1,s)” |
IfFalse: “¬bval b s ⇒ (IF b THEN c1 ELSE c2,s) → (c2,s)” |
While: “(WHILE b DO c,s) → (IF b THEN c;; WHILE b DO c ELSE SKIP,s)” |
— Your cases here:

Then correct the proof of the equivalence theorem between big-step and small-step semantics:

theorem big_iff_small:
“cs ⇒ t = cs →∗ (SKIP,t)”

Does the following theorem still hold? Prove or disprove! (Will not be checked by the submission system):

definition final where “final cs ←→ ¬(EX cs’. cs → cs’)”

lemma big_iff_small_termination:
“(∃ t. cs ⇒ t) ←→ (∃ cs’. cs →∗ cs’ ∧ final cs’)”