Exercise 10.1 Hoare Logic

In this exercise, you shall prove correct some Hoare triples.

Step 1 Write a program that stores the maximum of the values of variables a and b in variable c.

definition $MAX :: \text{com}$ where

Step 2 Prove these lemmas about max:

lemma $[\text{simp}]$: “$(a :: \text{int}) < b \implies \text{max} a b = b$”

lemma $[\text{simp}]$: “$\neg (a :: \text{int}) < b \implies \text{max} a b = a$”

Show that MAX satisfies the following Hoare triple:

lemma $\vdash \{ \lambda s. \text{True} \} \text{MAX} \{ \lambda s. s'' c'' = \text{max} (s'' a') (s'' b') \}$

Step 3 Now define a program MUL that returns the product of x and y in variable z. You may assume that y is not negative.

definition $MUL :: \text{com}$ where

Step 4 Prove that MUL does the right thing.

lemma $\vdash \{ \lambda s. 0 \leq s'' y' \} \text{MUL} \{ \lambda s. s'' z'' = s'' x'' * s'' y' \}$

Hints:

- You may want to use the lemma algebra_simps, containing some useful lemmas like distributivity.
• Note that we use a backward assignment rule. This implies that the best way to do proofs is also backwards, i.e., on a semicolon $c_1; c_2$, you first continue the proof for c_2, thus instantiating the intermediate assertion, and then do the proof for c_1. However, the first premise of the Seq-rule is about c_1. In an Isar proof, this is no problem. In an apply-style proof, the ordering matters. Hence, you may want to use the [rotated] attribute:

lemmas Seq_bwd = Seq[rotated]
lemmas hoare_rule[intro?] = Seq_bwd Assign Assign’ If

Step 5 Note that our specifications still have a problem, as programs are allowed to overwrite arbitrary variables.
For example, regard the following (wrong) implementation of MAX:

definition “MAX_wrong = ("a"::=N 0;"b"::=N 0;"c"::= N 0)"

Prove that MAX_wrong also satisfies the specification for MAX:

lemma “{λs. True} MAX_wrong {λs. s "c" = max (s "a") (s "b")]”

What we really want to specify is, that MAX computes the maximum of the values of a and b in the initial state. Moreover, we may require that a and b are not changed.
For this, we can use logical variables in the specification. Prove the following more accurate specification for MAX:

lemma “{λs. a=s "a" ∧ b=s "b"] MAX
{λs. s "c" = max a b ∧ a = s "a" ∧ b = s "b"]”

The specification for MUL has the same problem. Fix it!

Exercise 10.2 Forward Assignment Rule

Think up and prove a forward assignment rule, i.e., a rule of the form ⊢ {P} x := a {Q}, where Q is some suitable postcondition. Hint: To prove this rule, use the completeness property, and prove the rule semantically.

lemmas fwd_Assign' = weaken_post[OF fwd_Assign]

Redo the proofs for MAX and MUL from the previous exercise, this time using your forward assignment rule.

lemma “{λs. True} MAX {λs. s "c" = max (s "a") (s "b")]”
lemma “{λs. 0 ≤ s "y"] MUL {λs. s "z" = s "z" * s "y"]”
Homework 10.1 Fixed Points

Submission until Tuesday, January 9, 2018, 10:00am.

Prove the following fixed point theorem:

definition \(gfp :: "'(a set ⇒ 'a set) ⇒ 'a set" where \\
\(\text{gfp } f = \bigcup \{ P. \ P \subseteq f P \} \) "

lemma
- **assumes** "\(\forall x. y. x \subseteq y \implies f x \subseteq f y \)"
- **shows** "\(f (gfp f) = gfp f \) " \(\forall a. f a = a \implies a \subseteq gfp f \)"

The theorem proves two properties. The general way to do that is as follows:

lemma
- **assumes** "\(P \land Q \)"
- **shows** \(P \land Q \)

proof –
- **show** \(P \)
 - **using** **assms** by **simp**

- **show** \(Q \)
 - **using** **assms** by **simp**

qed

Homework 10.2 Be Original!

Submission until Tuesday, January 9, 2018, 10:00am. (20 regular points, plus bonus points for nice submissions)

Think up a nice formalization yourself, for example

- Prove some interesting result about graph/automata/formal language theory
- Formalize some results from mathematics
- Find interesting modifications of IMP material and prove interesting properties about them
- ...

You should set yourself a time limit before starting your project. Also incomplete/unfinished formalizations are welcome and will be graded!

Please comment your formalization well, such that we can see what it does/is intended to do.

You are welcome to discuss your plans with the tutor before starting your project.