
Technische Universität München
Lehrstuhl für Logik und Verifikation

Formalizing Symbolic Decision Procedures
for Regular Languages

Dmytro Traytel

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Dr. h.c. Javier Esparza

Prüfer der Dissertation:

1. Univ.-Prof. Tobias Nipkow, Ph.D.

2. Prof. Dr. Alexandra Silva
Radboud Universiteit Nijmegen, Niederlande

Die Dissertation wurde am 15.07.2015 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 15.10.2015 angenommen.

Abstract

This thesis studies decision procedures for the equivalence of regular languages
represented symbolically as regular expressions or logical formulas.

Traditional decision procedures in this context rush to dispose of the concise sym-
bolic representation by translating it into finite automata, which then are efficiently
minimized and checked for structural equality.

We develop procedures that avoid this explicit translation by working with the
symbolic structures directly. This results in concise functional algorithms that are
easy to reason about, even formally. Indeed, the presented decision procedures are
specified and proved correct in the proof assistant Isabelle.

The core idea, shared by all procedures under consideration, is the usage of a sym-
bolic derivative operation that replaces the global transition table of the automaton.
For regular expressions those are the increasingly popular Brzozowski derivatives
and their cousins. For formulas, the development of such operations is the main
theoretical contribution of this thesis.

The main technical contribution is the formalization of a uniform framework for
deciding equivalence of regular languages and the instantiation of this framework
by various symbolic representations. Overall, this yields formally verified exe-
cutable decision procedures for the equivalence of various kinds of regular expres-
sions, Presburger arithmetic formulas, and formulas of monadic second-order logic
on finite words under two different existing semantics (WS1S and M2L(Str)).

Zusammenfassung

Diese Dissertation beschäftigt sich mit Entscheidungsprozeduren für die Äquiv-
alenz regulärer Sprachen, die durch reguläre Ausdrücke oder logische Formeln
symbolisch dargestellt sind.

In diesem Kontext entledigen sich traditionelle Entscheidungsprozeduren schnell-
stmöglich der kompakten symbolischen Darstellung, indem sie sie in endliche Au-
tomaten übersetzen. Die Automaten werden anschließend effizient minimiert und
auf strukturelle Gleichheit überprüft.

Wir entwickeln Entscheidungsprozeduren, die diese explizite Übersetzung vermei-
den und stattdessen mit der symbolischen Darstellung arbeiten. Dies resultiert in
kompakten funktionalen Algorithmen, die sich leicht formal verifizieren lassen.
Die präsentierten Entscheidungsprozeduren sind nämlich alle in dem Theorembe-
weiser Isabelle spezifiziert und ihre Korrektheit ist formal bewiesen.

Die allen betrachteten Entscheidungsprozeduren zu Grunde liegende Idee ist die
Verwendung von symbolischen Ableitungen, die an Stelle der Übergangstabelle
von Automaten treten. Angewendet auf reguläre Ausdrücke entspricht das den
immer beliebter werdenden Brzozowski-Ableitungen und ihren Abwandlungen.
Die Definition solcher Ableitungsoperationen für logische Formeln ist der zentrale
theoretische Beitrag dieser Arbeit.

Die wichtigste technische Errungenschaft ist die Formalisierung einer generischen
Entscheidungsprozedur für die Äquivalenz regulärere Sprachen und deren In-
stanziierung durch verschiedene symbolische Darstellungen. Als Ergebnis er-
halten wir formal verifizierte, ausführbare Algorithmen für die Äquivalenz un-
terschiedlicher Arten von regulären Ausdrücken, sowie Formeln der Presburger-
Arithmetik und zweier bekannter Variationen der monadischen Prädikatenlogik
zweiter Stufe (WS1S and M2L(Str)).

Acknowledgment

If you are considering doing a Ph.D. and are not averse to theorem proving, I rec-
ommend you to do it under Tobias Nipkow’s guidance. I cannot imagine a supervi-
sor so liberal and at the same time so supportive (including constantly open doors),
not to mention his magic touch for finding sweet spots in research. I very much ap-
preciate that one of such sweet spots became the topic of my Ph.D. thesis. Although
he does not quite consider codatatypes a sweet spot, I am grateful that he allowed
me to spend a non-negligible amount of time working on this “hobby” of mine.

I was delighted to hear that Alexandra Silva accepted to act as a referee for my
thesis. Although, I have not met her in person before the submission of this thesis,
her research has been inspiring from the day when I started to think coalgebraically
about regular languages.

The collaboration with Damien Pous on the MonaCo tool was fun. I am happy that
he was interested in combining formula derivatives with his research. I hope that
ideas that went into MonaCo will make some users eventually similarly happy.

Next to Tobias Nipkow, I want to thank two people for explicitly teaching me how
to do research. Andrei Popescu and Jasmin Blanchette, the unanimous (co)leaders
of the codatatypists gang, are chaos and order, in that order. Andrei taught me how
to create precious theory from chaos by thinking abstractly, Jasmin—how to put the
theory in order by thinking concretely, yielding usable and used tools. Taking the
two together results in a self-reinforcing research machine.

While we are at the codatatypists gang: I am grateful to everyone who has con-
tributed to this project, notably Jasmin Blanchette, Aymeric Bouzy, Martin Deshar-
nais, Johannes Hölzl, Ondřej Kunčar, Andreas Lochbihler, Lorenz Panny, and An-
drei Popescu, or at least knows what BNF really stands for.

Ondřej Kunčar, my officemate for the longest part of my Ph.D., deserves a special
thanks for engaging me in interesting philosophical and local_theoretical discus-
sions, especially when some procrastination was urgently required. Nobody will
take our common, recently acquired hate for beach volleyball players away from us.

More generally, Tobias Nipkow’s chair for logic and verification (formerly known
as the theorem proving group) was an excellent team to be part of. I had the plea-

vii

viii

sure to work within this “flexible, client-driven organization” and want to thank
the people who made it into that pleasant experience (some of which left even
before I started, but still stay in touch with the group): Stefan Berghofer, Jasmin
Blanchette, Sascha Böhme, Julian Brunner, Lukas Bulwahn, Manuel Eberl, Florian
Haftmann, Johannes Hölzl, Brian Huffman, Lars Hupel, Fabian Immler, Gerwin
Klein, Alexander Krauss, Ondřej Kunčar, Peter Lammich, Lars Noschinski, Andrei
Popescu, Thomas Türk, Makarius Wenzel, the secretaries Silke Müller and Eleni
Nikolaou-Weiß, as well as the IT-support team. I especially thank the subset of
those people (extended with some external forces) who helped our pub-quiz team
laserbroy01 to win various beer-oriented prizes.

I thank Jasmin Blanchette, Florian Haftmann, Johannes Hölzl, Ondřej Kunčar, Peter
Lammich, Andrei Popescu, and Damien Pous for proofreading parts of my thesis
and supplying numerous helpful comments.

My Ph.D. was funded by the DFG Doctorate Program PUMA which was a nice en-
vironment to be in. Helmut Seidl deserves the biggest credit here for his dedication
as the coordinator. It was also a great fun to (co)organize the joint PUMA/RiSE
workshops together with Fabian Immler, Bogdan Mihaila, and Ana Sokolova.

I thank David Basin, Lutz Schröder, and Christoph Weidenbach for inviting me to
present my ongoing Ph.D. research to their groups.

I am grateful to my personal proof assistant, Isabelle, who did a marvelous job of
checking my arguments.

But most importantly I thank my family: Anna—my love; Moritz—my true source
of sunshine for over two years now; and my parents and co. for their continuous
support and endless patience, especially during the time of thesis writing. I dedi-
cate this thesis to them.

Contents

1 Introduction 1
1.1 Plan of Attack . 1
1.2 Related Work . 3
1.3 Contributions and Structure . 6
1.4 Publications . 7

2 Isabelle/HOL and Regular Languages 9
2.1 Programming and Proving in Isabelle/HOL 10
2.2 Locales . 12
2.3 Partiality . 13
2.4 Regular Expressions . 14

3 Formal Languages, Coinductively 17
3.1 Languages as Infinite Tries . 18
3.2 Regular Operations on Tries . 19

3.2.1 Primitively Corecursive Operations 19
3.2.2 Reducing Corecursion Up-To to Primitive Corecursion 21

3.3 Proving Equalities on Tries . 24
3.4 Coalgebraic Terminology . 28

4 Language Equivalence Framework 31
4.1 The Algorithm, Informally . 31
4.2 Coalgebras as Locales . 33
4.3 The Algorithm, Formally . 35
4.4 Termination . 38

5 Regular Expression Equivalence 41
5.1 Derivatives . 42

5.1.1 Brzozowski Derivatives . 42
5.1.2 Partial Derivatives . 45

5.2 Marked Regular Expressions . 47
5.2.1 Mark After Atom . 49
5.2.2 Mark Before Atom . 52
5.2.3 Comparison . 55

ix

5.3 Empirical Comparison . 56
5.4 Extensions . 59

6 Π-Extended Regular Expressions 61
6.1 Syntax and Semantics . 61
6.2 Decision Procedure . 63
6.3 Atoms with More Structure . 65
6.4 Alternatives to Brzozowski Derivatives 66

7 WMSO Equivalence via Regular Expression Equivalence 69
7.1 Syntax and Two Semantics . 70
7.2 From WMSO Formulas to Regular Expressions 73
7.3 Decision Procedure . 78
7.4 Case Study: Finite-Word LTL . 79

8 Derivatives of Formulas 83
8.1 Formula Derivatives . 84
8.2 Accepting Formulas . 88
8.3 Decision Procedure . 91
8.4 Minimum Semantics Optimization . 93
8.5 Case Study: MonaCo . 97
8.6 Case Study: Presburger Arithmetic . 103

9 Conclusion 107
9.1 Results . 107
9.2 Future Work . 109

Bibliography 113

x

I was a-trembling, because I’d got to decide,
forever, betwixt two things, and I knowed it. I
studied a minute, sort of holding my breath, and
then says to myself, “All right, then, I’ll go to hell.”

— Mark Twain, The Adventures of Huckleberry Finn
(1884)

Chapter 1

Introduction

Unlike the fundamental decision problem faced by Huckleberry Finn, regular lan-
guages are much closer to heaven. They play a central role in almost all branches of
computer science, and yet (or rather because of) most of the interesting questions
asked about them can be answered by a machine.

The main question under consideration in this thesis is language equivalence: given
two concrete symbolic representations of regular languages, decide whether they
denote the same language. Here, symbolic refers to a piece of syntax defined by an
abstract datatype—more concretely to regular expressions and logical formulas. It
explicitly does not refer to finite automata.

Traditionally, decision procedures for equivalence of such symbolic representations
rush to dispose of the syntactic structure by compiling it to deterministic finite
automata, which then are efficiently minimized and checked for structural equality.
Here, we explore an alternative path that avoids this explicit compilation step.

The decision procedures presented here are specified and proved correct in the Isa-
belle proof assistant. Thus, there is virtually no doubt in their correctness with
respect to a formal specification. The specification itself, however, needs to be in-
spected manually. Using Isabelle’s code generator, we extract verified algorithms
from the formalization in conventional functional programming languages.

1.1 Plan of Attack

Deciding equivalence of regular languages is a rather uncontroversial goal to pur-
sue. The choice of a suitable representation for regular languages is more subtle.
As with programming languages there is a spectrum of imperative and declarative
alternatives. Various kinds of finite automata are situated at the imperative end
of this spectrum. Here, we concentrate on the other end, which is populated by
regular expressions and formulas of weak monadic second-order logic (WMSO).

1

2 Chapter 1. Introduction

Our mantra is not only to take the declarative symbolic representations as input,
but also to stick to them in the course of the decision procedures. The key in-
gredient to achieve this for different representations are variations of Brzozowski
derivatives of regular expressions [25], which symbolically compute the regular
expression denoting what is left after reading one character and thus replace the
explicit global transition function of automata.

The main motivation for working with symbolic representations is simplicity. Reg-
ular expressions and formulas are free datatypes equipped with induction and re-
cursion principles and suitable for equational reasoning—the core competence of
proof assistants and functional programming languages. In contrast, automata are
arbitrary graphs and therefore not as easy to reason about in a structural fashion.

Symbolic decision procedures for regular expression equivalence based on varia-
tions of Brzozowski derivatives have been formalized before [5,24,35,76,85]. In this
thesis, we unify the different existing approaches in a common framework that es-
sentially constructs a syntactic bisimulation abstracting over concrete derivatives.
Based on a few properties of abstract derivatives we prove total correctness and
completeness of the bisimulation construction once and for all within the frame-
work. All decision procedures presented in this thesis are then obtained by instan-
tiating the framework with different derivative operations.

In his seminal work [26], Büchi envisioned WMSO to become a “more conventional
formalism [that] can be used in place of regular expressions [. . .] for formalizing
conditions on the behavior of automata”. This vision has materialized—WMSO
has been used to encode decision problems in hardware verification [11], program
verification [63], network verification [12], synthesis [55], etc.

Equivalence of WMSO formulas is decidable via the famous logic-automaton con-
nection [26, 39, 107], although the decision procedure’s complexity is non-elemen-
tary [83]. Nevertheless, the MONA tool [58] shows that the daunting theoretical
complexity can often be overcome in practice by employing a multitude of smart
optimizations. Similarly to Büchi, MONA’s manual [69] calls WMSO a “simple and
natural notation” for regular languages.

Traditional decision procedures for WMSO do not try to benefit from the con-
ventional, simple, and natural logical notation. Instead, by exploiting the logic-
automaton connection, formulas are translated into finite automata, which are then
minimized. During the translation all the rich algebraic formula structure includ-
ing binders and high-level constructs is lost. On the other hand, the subsequent
minimization might have benefited from some simplifications at the formula level.

We develop decision procedures for WMSO that are not employing automata and
formalize them using the Isabelle proof assistant.

The first decision procedure reduces equivalence of WMSO formulas to equiva-
lence of regular expressions. For a straightforward embedding of WMSO formulas

1.2. Related Work 3

into regular expressions, an extension of regular expressions with negation and in-
tersection as well as with a new projection operation is required. We develop an
equivalence checker for regular expressions extended in that way by extending the
derivative operation accordingly. We also define a language-preserving translation
of formulas into regular expressions that together with the mentioned equivalence
checker yields a decision procedure for WMSO.

Next, inspired by Brzozowski derivatives, we devise a notion of derivatives oper-
ating directly on formulas. Using formula derivatives, we obtain a second decision
procedure for WMSO that does not require a translation of formulas into automata.

All of the above procedures for WMSO come in two flavors mirroring two existing
semantics of WMSO: WS1S and M2L(Str).

Methodologically, the above procedures (as well as the generic framework) are
based on the coalgebraic view on languages due to Rutten [99]. This theory is
interesting in itself and formalized separately. We turn this formalization into a
tutorial on corecursion and coinduction in Isabelle/HOL.

The obtained decision procedures are sound but not very efficient. Combining
state-of-the-art optimizations, such as BDDs, hash consing, memoization, with for-
mula derivatives is the basis of the more competitive (unverified) MonaCo tool for
deciding WMSO, developed in an ongoing joint effort with Damien Pous.

Finally, we want to emphasize the value of formalization for our work. Besides
the usual arguments about guaranteed correctness, working out all details, and
eventually correcting mistakes that the literature is full of, we argue that the for-
malization helped us to clarify the landscape of various decision procedures. This
happened nearly automatically in the course of formalization, because the latter is
hard and forced us to take the simplest possible path, which often turns out to be
the most direct one. In the end, the clarified situation has fostered new ideas such
as derivatives of formulas.

1.2 Related Work

Our work stands on the shoulders of giants, which we introduce in several groups.

Language Theory Some classics of language theory are indispensable for our
work. At dawn of language theory, Kleene discovered regular expressions [71]
and proved Kleene’s famous theorem: regular expressions are as expressive as fi-
nite automata. Brzozowski introduced derivatives of regular expressions [25] a
decade later. This monumental work has the largest impact on this thesis of all
given references. Brzozowski’s main achievement was, besides the introduction of
the actual operation, to prove that there are only finitely many derivatives modulo
associativity, commutativity, and idempotence (ACI) of the union operator.

4 Chapter 1. Introduction

While traditional decision procedures for the equivalence of regular expressions
were translating the latter into automata [50, 82], Ginzburg [49] used Brzozowski’s
derivatives of regular expressions to decide their equivalence. His procedure is the
blueprint for our generic framework. Conway’s monograph [34], besides being an
entertaining read, also emphasizes the importance of the derivatives which he calls
“a skill worth acquiring”.

For regular expressions, different variations of Brzozowski derivatives have been
proposed more recently. Most prominently, the notion of partial derivatives has
been introduced by Antimirov [2, 3] and generalized by Caron et al. [29] to sup-
port complements and intersections. Partial derivatives capture ACI equivalence
directly in the data structure of sets. Often partial derivatives are viewed as the
non-deterministic counterpart of deterministic Brzozowski derivatives.

Stockmeyer and Meyer proved the PSPACE completeness of the equivalence prob-
lem for regular expressions [105].

Logic Even before Brzozowski, Büchi [26] proposed an alternative to regular ex-
pressions for specifying regular properties. Since he was a logician, it is not sur-
prising that his language of choice was a logic: the weak monadic second-order
logic of one successor (WS1S). The logic-automaton connection—the counterpart
of Kleene’s theorem for this logic—was discovered independently by Büchi, Elgot,
and Trakhtenbrot [26, 39, 107]. Meyer [83] extended earlier results [105] to show
that equivalence of WS1S formulas is of non-elementary complexity.

The daunting theoretical complexity has been faced by developers of the Mosel [65]
and MONA [38, 58, 70] tools. The latter is the state of the art for WS1S today and
shows that in practice reasonable things can be achieved despite the theoretical
intractablity [11, 12, 55, 63].

More recently, some attempts to improve on the state of the art have been initiated.
Fiedor et al. [41] employ the modern antichain technique for nondeterministic au-
tomata in the context of deciding WS1S. Their tool, dWiNA, outperforms MONA
for certain classes of formulas (in particular for formulas in prefix normal form).

Ganzow and Kaiser [45,46] present a very general, model theoretic decision proce-
dure for weak monadic second-order logic on inductive structures that is inspired
by Shelah’s composition method [102]. Although they tackle the problem from a
completely different angle, their computation of the next-state function is also per-
formed symbolically on formulas and therefore has a similar flavor as our deriva-
tives of formulas. However, after obtaining the next-state function in such a way,
Ganzow and Kaiser escape the formula world by translating the problem into a
finite reachability game. Their algorithm is implemented in the Toss tool. It out-
performs MONA for certain formulas, by outsourcing parts of the computation to
state-of-the-art SAT-solvers. Overall, the work by Ganzow and Kaiser can serve as
a starting point on how to generalize our procedure beyond WS1S.

1.2. Related Work 5

Coalgebra Given its young age the theory of coalgebra [9,62,100] is an extremely
influential field. Rutten [99] has outlined the coalgebraic view on formal languages.
Derivatives play a central role in this view. A little later, Jacobs coined the bialge-
braic view on regular languages [61] where the syntax of regular expressions is
considered from the inductive algebraic perspective and their semantics from the
coinductive coalgebraic perspective.

This bialgebraic view caters for an elegant proof of Kleene’s theorem for regular
languages [61,99] and its generalization to other coalgebras [22,103]. Another high-
light of the coalgebraic approach is an elegant exposition of Brzozowski’s algorithm
for minimization [19,20] A recent overview of landmark results gathered under the
unifying umbrella of coalgebra is given by Silva [104].

Programing languages Recently, derivatives of regular expressions have received
a noticeable increase of interest in the programming language community (espe-
cially functional programming). Owens et al. [92] were first to implement an effi-
cient scanner generator for Standard ML based on Brzozowski derivatives, which
according to them were “lost in the sands of time”. Fischer et al. [43] use a variation
of derivatives for matching to outperform a Google library.

Beyond regular expressions, generalizations of Brzozowski derivatives were devel-
oped for context-free grammars [36, 84] and Kleene algebra with tests (KAT) [73].
In the latter case, derivatives give rise to efficient coalgebraic decision procedures
for KAT [96] and its network-targeted specialization NetKAT [44]. Our work can
be seen in line with this work, albeit replacing “efficient” with “verified”. The ulti-
mate goal is to develop procedures that fulfill both predicates.

Interactive theorem proving Also the interactive theorem proving community
has started to realize the elegance of derivatives only recently. This resulted in a
series of formalized decision procedures for regular expressions equivalence.

The first verified equivalence checker for regular expressions was published by
Braibant and Pous [24]. They worked with automata, not regular expressions,
their theory was large and their algorithm efficient. In response, Krauss and Nip-
kow [76] gave a much simpler partial correctness proof for an equivalence checker
for regular expressions based on derivatives. Coquand and Siles [35] showed to-
tal correctness of their equivalence checker for extended regular expressions based
on derivatives. Asperti [5] presented an equivalence checker for regular expres-
sions via marked regular expressions (as previously used by Fischer et al. [43]) and
showed total correctness. Moreira et al. [85] presented an equivalence checker for
regular expressions based on partial derivatives and showed its total correctness.

Outside of the application area of equivalence checking, Wu et al. [118, 119] ben-
efited from the inductive structure of regular expressions and Antimirov’s partial
derivatives to formally verify the Myhill-Nerode theorem.

6 Chapter 1. Introduction

Beyond regular expressions, Berghofer and Reiter [13] formalized a decision pro-
cedure for Presburger arithmetic via automata in Isabelle/HOL.

MONA was linked as an external prover to Isabelle by Basin and Friedrich [10] and
to PVS by Owre and Rueß [93]. In both cases, MONA is used as a trusted oracle for
deciding formulas in the respective theorem prover.

1.3 Contributions and Structure

The main contribution of this thesis is the formalization of a uniform framework for
deciding language equivalence based on the coalgebraic view on regular languages
and the instantiation of this framework by various syntactic representations includ-
ing regular expressions, WMSO formulas under different semantics, and formulas
of Presburger arithmetics.

For regular expressions we reuse the wealth of syntactic representations that have
been proposed in the literature. Our contribution here lies merely in their unifica-
tion and formalization. The situation is different with formulas where both—the
translation to Π-extended regular expressions (alongside the introduction of the
latter) as well as the notion of formula derivatives—are new contributions.

In more detail, each of the following chapters except for preliminaries (Chapter 2)
and conclusion (Chapter 9) offers one central contribution (often beyond other less
important ones that are named in the respective chapter). The central contributions
are listed below.

Chapter 3 Formalization of the coalgebraic view on formal languages

Chapter 4 Development (and formalization) of a generic framework
for deciding language equivalence

Chapter 5 Instantiation of the framework with various existing deriv-
ative-like operations on regular expressions

Chapter 6 Introduction (and formalization) of Π-extended regular ex-
pressions and their derivatives

Chapter 7 Introduction (and formalization) of a semantics preserving
translation of WMSO formulas Π-extended regular expressions

Chapter 8 Introduction (and formalization) of a formula derivatives
for WMSO and Presburger arithmetic

The chapters are intended to be read in order. Chapter 3 forms an exception to this
rule. Although it is helpful for understanding the coalgebraic setting, the following
chapters do not rely on it formally. The two semantics of WMSO are introduced in
Chapter 7. Moreover, Chapter 8 contains a case study on the ongoing development
of the unverified but efficient MonaCo tool that is based on formula derivatives.

1.4. Publications 7

1.4 Publications

This thesis is built upon the following three refereed conference publications and
one journal article ordered chronologically by the date of completion.

[113] D. Traytel and T. Nipkow. Verified decision procedures for MSO on words
based on derivatives of regular expressions. In G. Morrisett and T. Uustalu,
editors, ICFP 2013, pages 3–12. ACM, 2013.

[89] T. Nipkow and D. Traytel. Unified decision procedures for regular expression
equivalence. In G. Klein and R. Gamboa, editors, ITP 2014, volume 8558 of
LNCS, pages 450–466. Springer, 2014.

[115] D. Traytel and T. Nipkow. Verified decision procedures for MSO on words
based on derivatives of regular expressions. J. Funct. Program., 25, 2015. Ex-
tended version of [113].

[111] D. Traytel. A coalgebraic decision procedure for WS1S. In S. Kreutzer, editor,
CSL 2015, volume 41 of LIPIcs, pages 487–503. Schloss Dagstuhl—Leibniz-
Zentrum für Informatik, 2015.

We reuse material from these publications with Tobias Nipkow’s permission. The
publications are associated to the individual chapters as follows: Chapter 5 is based
on the ITP publication, Chapters 6 and 7 on the ICFP publication and its extended
J. Funct. Program. version, and Chapter 8 on the CSL publication. The framework
from Chapter 4 is not published yet at the level of generality as it is presented
here. It constitutes the (so far) last step in a series of generalizations starting from a
concrete decision procedure towards more and more abstractions.

Moreover, we describe formalizations that withstood the test of the most merci-
less and pedantic reviewer— the Isabelle proof assistant. The associated artifacts
(formal proof developments) are published in the Archive of Formal Proofs (AFP).

[110] D. Traytel. A codatatype of formal languages. In Archive of Formal Proofs.
2013. http://afp.sf.net/entries/Coinductive_Languages.shtml.

[90] T. Nipkow and D. Traytel. Unified decision procedures for regular expression
equivalence. In Archive of Formal Proofs. 2014. http://afp.sf.net/entries/

Regex_Equivalence.shtml.

[114] D. Traytel and T. Nipkow. Decision procedures for MSO on words based on
derivatives of regular expressions. In Archive of Formal Proofs. 2014. http:

//afp.sf.net/entries/MSO_Regex_Equivalence.shtml.

[112] D. Traytel. Derivatives of logical formulas. In Archive of Formal Proofs. 2015.
http://afp.sf.net/entries/Formula_Derivatives.shtml.

http://afp.sf.net/entries/Coinductive_Languages.shtml
http://afp.sf.net/entries/Regex_Equivalence.shtml
http://afp.sf.net/entries/Regex_Equivalence.shtml
http://afp.sf.net/entries/MSO_Regex_Equivalence.shtml
http://afp.sf.net/entries/MSO_Regex_Equivalence.shtml
http://afp.sf.net/entries/Formula_Derivatives.shtml

8 Chapter 1. Introduction

The chronological order of those AFP entries (in which they are given) corresponds
closely to the chapter order in this thesis. The formalizations still deviate slightly
from the presentation here, mainly for historical reasons. The last version of the
generic framework was introduced only in the last AFP entry [112] and we have
not upgraded earlier formalizations to use the full generality yet. Thus the thesis
presents an idealistic view on how things should have been formalized: uniformly,
starting from the general framework. The actual formalizations are less uniform.

Finally, the following research, which was conducted in parallel to the material pre-
sented here and is mostly about the implementation and usage of the new modular
infrastructure for (co)datatypes in Isabelle/HOL, is beyond the scope of this thesis.
Some of these refereed publications do form relevant related work (especially for
Chapter 3) and are cited there accordingly.

[] D. Traytel, A. Popescu, and J. C. Blanchette. Foundational, compositional
(co)datatypes for higher-order logic—Category theory applied to theorem
proving. In LICS 2012, pages 596–605. IEEE, 2012.

[] J. C. Blanchette, J. Hölzl, A. Lochbihler, L. Panny, A. Popescu, and D. Traytel.
Truly modular (co)datatypes for Isabelle/HOL. In G. Klein and R. Gamboa,
editors, ITP 2014, volume 8558 of LNCS, pages 93–110. Springer, 2014.

[] J. C. Blanchette, A. Popescu, and D. Traytel. Cardinals in Isabelle/HOL. In
G. Klein and R. Gamboa, editors, ITP 2014, volume 8558 of LNCS, pages 111–
127. Springer, 2014.

[] J. C. Blanchette, A. Popescu, and D. Traytel. Unified classical logic complete-
ness—A coinductive pearl. In S. Demri, D. Kapur, and C. Weidenbach, editors,
IJCAR 2014, volume 8562 of LNCS, pages 46–60. Springer, 2014.

[] J. C. Blanchette, L. Hupel, T. Nipkow, L. Noschinski, and D. Traytel. Expe-
rience report: The next 1100 Haskell programmers. In W. Swiestra, editor,
Haskell 2014, pages 25–30. ACM, 2014.

[] J. C. Blanchette, A. Popescu, and D. Traytel. Witnessing (co)datatypes. In
J. Vitek, editor, ESOP 2015, volume 9032 of LNCS, pages 359–382. Springer,
2015.

[] J. C. Blanchette, A. Popescu, and D. Traytel. Foundational extensible corecur-
sion. In J. Reppy, editor, ICFP 2015, pages 192–204. ACM, 2015.

[] J. Hölzl, A. Lochbihler, and D. Traytel. A formalized hierarchy of probabilis-
tic system types—Proof pearl. In X. Zhang and C. Urban, editors, ITP 2015,
volume 9236 of LNCS, pages 203–220. Springer, 2015.

Yes yes yes! A machine proof is much easier if you already
understand the intuition behind the traditional proof. It is
a myth that machine assistance can replace the need for
competence and understanding. The machine magnifies
competence, but it also magnifies incompetence. . .

— Lawrence C. Paulson (2007)

Chapter 2

Isabelle/HOL and
Regular Languages

Isabelle is a generic proof assistant. She follows the LCF tradition [51] of having
a (relatively) small trusted kernel. Every theorem that is accepted by Isabelle is a
consequence of the few primitive inferences belonging to the kernel. To make for
a usable proving environment, Isabelle offers a wide variety of complex definitional
facilities that reduce high-level user specifications to the kernel’s primitives with-
out introducing new axioms and advanced automatic proof tools (methods) that
internally compose primitive inferences. Thereby, the LCF architecture constitutes
a rather strong safeguard against inconsistencies.

Being generic means for Isabelle to support reasoning based on different logical
foundations—the object logics. The most widely used and developed object logic
is higher-order logic (HOL)— also our object logic of choice. HOL is based on
Church’s simple type theory [31]. It is the logic of Gordon’s original HOL system
[52] and of its many successors such as HOL4 [52], HOL Light [56], HOL Zero [1],
and ProofPower–HOL [4]. Isabelle extends the classic HOL with overloading and
type classes in a consistent fashion [79, 80]; this flavor is called Isabelle/HOL.

The Isabelle/HOL tutorial [88] introduces higher-order logic by the equation “HOL
= Functional Programming + Logic”. This minimalistic description fits very well
to what we are planning to do in this thesis: programming (functional) decision
procedures and proving their correctness. Our presentation of Isabelle/HOL will
therefore abstract over for our purposes non-essential details, such as the sepa-
ration into the object logic HOL and Isabelle’s meta-logic Pure, foundational ques-
tions (what are the axioms?), Hilbert choice, and even the structural proof language
Isar.1 For a more comprehensive introduction to Isabelle/HOL we refer to the tu-
torial [88] and a more recent textbook [87, Part I].

1Only Chapter 3 will contain some Isar proofs, which by design [117] should be readable without
any further explanation also for a non-expert.

9

10 Chapter 2. Isabelle/HOL and Regular Languages

2.1 Programming and Proving in Isabelle/HOL

In Isabelle/HOL types τ are built from type variables α, β, etc. via type construc-
tors α κ written postfix. Types represent sets of values. Some special types are the
sum type α + β, the product type α × β, and the function type α → β, for which the
type constructors are written infix. Infix operators bind less tightly than the postfix
or prefix ones; we omit parentheses where possible. Other important types are the
type of Booleans bool inhabited by exactly two different values ⊺ (truth) and � (fal-
sity) and the type α set of sets of elements of type α. Note that α set is isomorphic to
α→ bool but those are two separate types in Isabelle/HOL.

The notation t ∶∶ τ means that term t has type τ. A term t is either a variable x, y,
etc. or a constant c, d, or a lambda abstraction λx. t, or an application t t′. As usual,
application associates to the left: f x y denotes (f x) y. The typing rules for terms
are standard.

For Boolean connectives and sets common mathematical notation is used. Some
less standard vocabulary follows: fst ∶∶ α × β → α and snd ∶∶ α × β → β are the pro-
jections of the product type, id = λx. x is the identity function, the predicate finite ∶∶
α set→ bool asserts that a set contains only finitely many elements, and the function
● (written infix) computes the image of a function over a set: f ● X = { f x ∣ x ∈ X}.
All types in HOL have to be non-empty. The set of all values of a type τ is denoted
by UNIV ∶∶ τ set. A special constant is equality =∶∶ α → α → bool, which is polymor-
phic (it exists for any type, including the function type, on which it is extensional).

Theorems are just terms of type bool, which were proven to be equivalent to ⊺ via
the primitive kernel inferences, for example by backward reasoning via the bare-
bones rule method that relies on higher-order unification [88], or more automatic
methods like the rewriting engine (simp) or the powerful mixture of rewriting and
classical reasoning (auto).

There are two primitives for introducing new types and constants: typedef and
definition. With the typedef command, a new type can be defined by carving
out a non-empty subset A (not referring to the new type) from an existing type.
For example we can define the singleton type unit by carving out the singleton set
containing ⊺ from bool.

typedef unit = {⊺}

This command requires the user to prove {⊺} /= {} and thereafter introduces the
new type unit together with two bijections Repunit ∶∶ unit → bool and Absunit ∶∶ bool →
unit between UNIV ∶∶ unit set and {⊺}. The bijectivity is captured by a few axioms.
The only inhabitant of unit is defined using the primitive for constant definitions.

definition u ∶∶ unit where
u = Absunit ⊺

2.1. Programming and Proving in Isabelle/HOL 11

Equations accepted by definition are introduced as axioms and thus restricted to
a very simple format f x1 . . . xn = t x1 . . . xn, where f does not occur in t. With other
words definitions may not be recursive.

Lifting constants to newly defined types and proving properties about those is a
tedious labor due to the bijections that need to be inserted in the right places and
eventually cancel out while proving. The Lifting and Transfer [60] tools automate
this tedium making typedefs (quasi)transparent. In our formalization we use them
extensively, however for the presentation here we keep silent about certain auxil-
iary typedefs and therefore will not need to introduce the syntax of those tools.

What we will need more often in the presentation are inductive types and recur-
sive functions. Isabelle offers a datatype command that reduces an inductive type
specification (in the spirit of a Standard ML datatype) to a primitive non-recursive
typedef [16]. For example we can define the types of natural numbers and lists of
elements of type α in a standard way.

datatype nat = 0 ∣ nat+ 1

datatype α list = [] ∣ (hd ∶ α) # (tl ∶ α list)

Note that we may use (almost) arbitrary syntax for our constructors. Here _ + 1
is a unary constructor of natural numbers (often called Suc) and # is the infix list
constructor. Moreover, the datatype command allows the user to annotate the ar-
guments of a constructor with names for selectors. The list declaration thus defines
hd ∶∶ α list → α and tl ∶∶ α list → α list to return a list’s head and tail, respectively. We
also obtain the associated characteristic equations such as hd (x # xs) = x. Note that,
since hd [] is not specified, there is nothing that can be proved about it (except that
it constitutes a term of type α given that [] is of type α list).

After defining the type, the datatype command also derives a large amount of
useful theorems for reasoning about the types including an induction rule. For
natural numbers and lists the rules are the familiar ones (written as inference rules).

P 0 ∀n. P nÐ→ P (n+ 1)
∀n. P n

P [] ∀x xs. P xsÐ→ P (x # xs)
∀xs. P xs

Moreover, the datatype command also sets up the infrastructure for defining recur-
sive functions. The definitions are performed by separate commands: primrec [14]
for primitive recursion and fun [77] for general wellfounded recursion. We demon-
strate primrec’s syntax that we use in this thesis (which is quite faithful to the actual
Isabelle syntax) on the example of the append operation (written infix @). To use
fun, no syntactic change is required, except for the command’s name.

12 Chapter 2. Isabelle/HOL and Regular Languages

primrec @ ∶∶ α list→ α list→ α list where
[] @ ys = ys
(x # xs) @ ys = x # (xs @ ys)

Beside constructors, selectors, and @, lists come with the following vocabulary:
functions set ∶∶ α list → α set (converting from lists to sets), as_list ∶∶ α set → α list
(converting a finite set with a linear order attached to its elements to a list), map ∶∶
(α → β) → α list → β list (applying a function to every element in the list), rev ∶∶
α list → α list (reversing a list), and fold ∶∶ (α → β → β) → α list → β → β (the primitive
recursion combinator) are all defined by primitive recursion. The length of a list
xs is abbreviated by ∣xs∣; the nth element of xs is accessed via xs[n] (zero based and
assuming that n < ∣xs∣); the predicate distinct ∶∶ α list → bool yields ⊺ iff its argument
list does not contain any element more than once.

Besides inductive types, Isabelle has recently been extended to also support coin-
ductive types via the codatatype command [14]. A prominent example of co-
datatypes are lazy lists— the coinductive counterparts of lists. We define them
using the same syntax (including selectors) as for datatypes (except for the com-
mand’s name).

codatatype α llist = []l ∣ (lhd ∶ α) #l (ltl ∶ α llist)

Codatatypes permit values of the type to be constructed from a finite or infinite
number of constructors (much like Haskell’s data due to lazy evaluation), while a
value of a datatype is always finite. The above command provides many conve-
niences for reasoning about codatatypes, including a coinduction principle and a
setup for primitively corecursive definitions. We explain the conveniences in more
detail in Chapter 3.

A large fragment of HOL, including recursive functions over datatypes, is exe-
cutable. That is Isabelle can generate code in functional languages from a given
specification [54]. This includes functions on (finite) sets [53]. All the decision pro-
cedures presented in this thesis are carefully designed to be executable.

2.2 Locales

Locales [8] are Isabelle’s tool for modelling parameterized systems. Recently, lo-
cales have been used to model institution theoretical reasoning about translations
of logics [15]. We prefer to stick to a more standard presentation and usage. A
locale fixes parameters and states assumptions about them.

locale A =
fixes x1 and ⋯ and xn

assumes n1 ∶ P1 x and ⋯ and nm ∶ Pm x

2.3. Partiality 13

In the context of the locale A, we can define constants that depend on the param-
eters xi and prove properties about those constants using the assumptions Pi (ac-
cessed under the name ni). To place a definition, primrec, or theorem into the
context of a locale we annotate the command with a target modifier, for example
definition (in A) x1n = (x1, xn). The parameters of a locale can be instantiated later
via the interpretation command.

interpretation J ∶ A where

x1 = t1 . . . xn = tn

The command issues proof obligations Pi t (that the user must discharge) and ex-
ports all constants (and theorems) defined (proved) in the context of the locale with
xi instantiated to ti. Note that ti may contain free variables which after instantiation
become formal dependencies of the exported definitions and theorems. Multiple
interpretations of the same locale are possible; the name prefix “J” disambiguates
different instances. It is also possible to interpret a locale B while being inside of
another locale A. This is usually modeled with the sublocale command.

sublocale A ≤ B

Similarly to an interpretation, the sublocale command requires the user to dis-
charge B’s assumptions, assuming that A’s assumption hold. Afterwards all def-
initions and theorems of B also become accessible in A. Moreover, as before an
additional where clause may preinstantiate B’s parameters with some terms that
depend on A’s parameters.

2.3 Partiality

Isabelle/HOL is a logic of total functions. Sometimes, we would still like to rea-
son about functions, that may not terminate, but whose behavior in the non-termi-
nating case can be uniquely specified. An example where this situation arises are
tail recursive functions. Here it is sound to assign the function in the case of non-
termination a single arbitrary but fixed value from the function’s result type (note
that all types are non-empty, hence such a value exists).

Tail recursive functions can be transformed into while loops, which are typically
modeled in Isabelle via the while combinator.

definition while ∶∶ (α→ bool)→ (α→ α)→ α→ α option where

while b c s = if ∃k. ¬b (ck s) then Some (cLeast k. ¬b (ck s) s) else None

Here, cks denotes the k-fold application c (⋯c (c s)⋯) and Least k. P k specifies
the smallest natural number m for which P m holds. The option type α option has

14 Chapter 2. Isabelle/HOL and Regular Languages

two constructors None ∶∶ α option and Some ∶∶ α → α option. Some lifts elements from
the base type α to the option type, while None is usually used to indicate some
exceptional (here non-terminating) behavior.

The above total specification of while is not yet executable. Supplying the following
key theorem as a code equations to the code generator makes while executable.

theorem while b c s = if b s then while b c (c s) else Some s

The code generated from this tail recursive equation will return Some s in case the
definition of while says so, but instead of returning None, it will not terminate. Thus,
we can later prove termination if we can show that the result is ≠ None.

An alternative to the while-combinator would be to use the partial_function com-
mand [75], which automates definitions of tail recursive and monadic functions
(for example on the α option monad). For tail-recursive functions defined with
partial_function, stating the termination property is less convenient, which was
the main reason for us to prefer the more low-level while-combinator.

2.4 Regular Expressions

The standard way to represent regular languages is to view them as a set of words
(which in turn are represented by lists). While in the next chapter we explore an
alternative representation, we briefly recapitulate here what Isabelle has to offer
when using the standard representation.

Regular expressions are defined as a recursive datatype.

datatypeαRE = ∅ ∣ ε ∣ A α ∣ αRE + αRE ∣ αRE ⋅ αRE ∣ (αRE)∗

They are assigned the usual (non-executable) semantics L by primitive recursion.

primrec L ∶∶ αRE→ (α list) set where
L ∅ = {}
L ε = {[]}
L (A a) = {[a]}
L (r + s) = L r ∪ L s
L (r ⋅ s) = L r ⋅ L s
L (r∗) = ⋃i∶∶nat(L r)i

Here, A ⋅ B abbreviates the set {u @ v ∣ u ∈ A, v ∈ B} and Ai is defined recursively via
A0 = {[]} and An+1 = A ⋅ An. In concrete regular expressions, we sometimes omit the
constructor A for readability.

2.4. Regular Expressions 15

Next, we define two executable functions, which will accompany us throughout
the thesis: the empty word acceptance test o and Brzozowski derivatives δ.

primrec o ∶∶ αRE→ bool where
o ∅ = �
o ε = ⊺
o a = �
o (r + s) = o r ∨ o s
o (r ⋅ s) = o r ∧ o s
o (r∗) = ⊺

primrec δ ∶∶ α→ αRE→ αRE where

δ a ∅ = ∅
δ a ε = ∅
δ a b = if a = b then ε else ∅
δ a (r + s) = δ a r + δ a s
δ a (r ⋅ s) = δ a r ⋅ s+ if o r then δ a s else ∅
δ a (r∗) = δ a r ⋅ r∗

The empty word acceptance test o satisfies o r ←→ [] ∈ L r. The Brzozowski deriva-
tive δ computes the regular expression denoting the left quotient of the language
of the input expression with respect to some a ∶∶ α; formally it is characterized by
L (δ a r) = {v ∣ a # v ∈ L r}. The extension of δ from single symbols to words w ∶∶ α list
can be expressed as fold δ w; accordingly we have L (fold δ w r) = {v ∣ w @ v ∈ L r}.

Finally, we remark that in the course of the thesis we will extensively use over-
loading of the notation. For example, we will extend the type αRE with additional
constructors and see many variations of o and δ in the thesis. Almost always those
variations will be still called αRE, o, and δ. Which variation exactly is meant will
be clear from the context (usually the most recently introduced one).

In this case, as in many others, the process gives
the minimal machine directly to anyone skilled in
input differentiation. The skill is worth acquiring.

— John H. Conway (1971)

Chapter 3

Formal Languages, Coinductively

If one asks a computer scientist what a formal language is, the answer will most
certainly be: a set of words. Here, we advocate another valid answer: an infinite
trie. This is the coalgebraic view on languages introduced by Rutten [99], from
whom Conway’s very fitting (as we will see) quote is shamelessly stolen.

This chapter shows how to formalize the coalgebraic view on formal languages in
Isabelle/HOL in the form of a tutorial on corecursion and coinduction. After in-
troducing infinite tries as a codatatype (Section 3.1), we define regular operations
on them by corecursion (Section 3.2) and prove that the defined regular operations
satisfy the axioms of Kleene algebra by coinduction (Section 3.3). The target audi-
ence of the tutorial is the working formalizer, that is, somebody assumed not to be
familiar with the theory of coalgebra. Thus, coalgebraic terminology will be used
sparingly; indeed it will only be introduced at the very end (Section 3.4). The tuto-
rial will make abundant use of notation overloading. We will use exactly the same
notation that we have introduced for regular expressions for the corresponding no-
tions on infinite tries. However, there will be not much usage of regular expressions
here, such that no confusion should arise. The material presented in this chapter is
based on the formalization constituting an AFP entry [110].

The literature is abound with tutorials on coinduction. So why bother writing
yet another one? First, because we finally can do it in Isabelle/HOL using con-
venient high-level tools [16, 18, 116], without going through tedious manual con-
structions [94]. Second, coinductive techniques are still not as widespread as they
could be (and we believe should be, since they constitute a convenient proof tool
for questions about semantics). Third, many tutorials [30, 48, 59, 62, 74], with or
without a theorem prover, exercise streams to that extent that one starts to believe
having seen everything about streams. Even if this is not true, Rutten [99] demon-
strates that it is entirely feasible to start with a structure slightly more complicated
than streams, but familiar to everybody with a computer science degree. Finally,
the decision procedures presented later in this thesis are based on the coalgebraic
view. Therefore, the tutorial will gently set us in the right state of mind.

17

18 Chapter 3. Formal Languages, Coinductively

3.1 Languages as Infinite Tries

We define the type of formal languages as a codataype of infinite tries, that is, (pre-
fix) trees of infinite depth branching over the alphabet. We represent the alphabet
by the type α. Each node in a trie carries a Boolean label, which indicates whether
the (finite) path to this node constitutes a word inside or outside of the language.
The function type models branching: for each letter x ∶∶ α there is an x-subtree.

codatatype α lang = L (o ∶ bool) (δ ∶ α→ α lang)

The codatatype command defines the type α lang together with a constructor L ∶∶
bool → (α → α lang) → α lang and two selectors o ∶∶ α lang → bool and δ ∶∶ α lang →
α → α lang.1 For a binary alphabet α = {a, b}, the trie even shown in Figure 3.1 is
a typical inhabitant of α lang. The label of its root is given by o even = ⊺ and its
subtrees by another trie odd = δ even a = δ even b. Similarly, we have o odd = � and
even = δ odd a = δ odd b. Note that we could have equally written even = L ⊺ (λ_. odd)
and odd = L � (λ_. even) to obtain the same mutual characterization of even and odd.

⊺

� �

⊺ ⊺ ⊺ ⊺

.

a b

a b a b

a b a b a b a b

Figure 3.1: Infinite trie even

We gave our type the name α lang, to remind us to think of its inhabitants as formal
languages. Nevertheless, we call its inhabitants tries, because that is what they are.

Beyond defining the type and the constants, the codatatype command also proves
a wealth of properties about them such as o (L b d) = b, the injectivity of L, or more
interestingly the coinduction rule, which we will study more carefully later.

Clearly, we would like to identify the trie even with the regular language of all
words of even length {w ∈ {a, b}∗ ∣ ∣w∣ mod 2 = 0}, also represented by the regular
expression ((a + b) ⋅ (a + b))∗. Therefore, we define the notion of word member-
ship ∈∈ on tries by primitive recursion on the word as follows.

primrec ∈∈ ∶∶ α list→ α lang→ bool where
[] ∈∈ L = o L
(x # w) ∈∈ L = w ∈∈ δ L x

1Note that the argument order for this selector differs from other usages of δ in this thesis.

3.2. Regular Operations on Tries 19

Using ∈∈, each trie can be assigned a language in the traditional set of lists view.

definition out ∶∶ α lang→ α list set where
out L = {w ∣ w ∈∈ L}

For example out even = {w ∈ {a, b}∗ ∣ ∣w∣ mod 2 = 0}. We will see later that α lang is
isomorphic to the set of lists view on languages by showing that out is a bijection.

3.2 Regular Operations on Tries

So far, we have only specified some concrete infinite tries informally. In Isabelle,
following the LCF approach, any corecursive specification must be reduced to a
primitive non-recursive definition. The primcorec command automates this reduc-
tion for the class of primitively corecursive functions [14]. Primitive corecursion is
dual to primitive recursion. Primitive recursion destructs one layer of construc-
tors before proceeding recursively. Primitive corecursion constructs (or produces)
one constructor whose arguments are allowed to be either non-recursive terms or a
corecursive call (applied to arbitrary non-recursive arguments). Beyond this, there
is no tool support for corecursive specifications at the point of writing. While so-
phisticated methods involving domain, measure, and category theory have been
proposed [17, 81], we explore here how far primitive corecursion can get us.

3.2.1 Primitively Corecursive Operations

We start with some simple examples: the languages of the base cases of regular
expressions. Intuitively, the trie ∅ representing the empty language is labeled with
� everywhere and the trie ε representing the empty word language is labeled with
⊺ at its root and with � everywhere else. The trie A a representing the singleton
language of the one letter word a is labeled with � everywhere except for the root
of its a-subtree. This intuition is easy to capture formally.

primcorec ∅ ∶∶ α lang where

∅ = L � (λx. ∅)
primcorec ε ∶∶ α lang where

ε = L ⊺ (λx. ∅)

primcorec A ∶∶ α→ α lang where

o (A a) = �
δ (A a) = λx. if a = x then ε else ∅

Out of these three definitions only ∅ is corecursive. (The primcorec command also
gracefully handles non-recursive specifications.)

The specifications on the left differ syntactically from the one on the right. The con-
stants ∅ and ε are defined using the so called constructor view. It allows the user to
enter equations of the form constant or function equals constructor, where the ar-
guments of the constructor are restricted as described above (modulo some further

20 Chapter 3. Formal Languages, Coinductively

syntactic conveniences, such as lambda abstractions, case-, and if-expressions).
This kind of definitions should be familiar to any (lazy) functional programmer.

In contrast, the specification of A utilizes the destructor view. Here, we specify the
constant or function being defined by observations or experiments via selector equa-
tions. The allowed experiments on a trie are given by its selectors o and δ. We can
observe the label at the root and the subtrees. Specifying the observation, again
restricted to be either a non-recursive term or a direct corecursive call, for each se-
lector yields a unique characterization. In general, for codatatypes with more than
one constructor, the situation is slightly more elaborate [14], but not relevant here.

It is straightforward to rewrite specifications in either of the views into the other
one. The primcorec command performs this rewriting internally and outputs the
theorems corresponding to the user’s input specification in all views. The construc-
tor view theorems serve as executable code equations (which make sense in pro-
gramming languages with lazy evaluation), while the destructor view offers safe
simplification rules even when applied eagerly as done by Isabelle’s simplifier.

Now that the basic building blocks ∅, ε, and A are in place, we turn our attention
to how to combine them to obtain more complex languages. We start with the sim-
pler combinators for union, intersection, and negation, before moving to the more
interesting concatenation and iteration. The union + of two tries should denote set
union of languages (i.e. out (L + K) = out L ∪ out K should hold). It is defined
corecursively by traversing the two tries in parallel and computing for each pair
of labels their disjunction. Intersection ∩ is the same, but replacing conjunction for
disjunction. Negation ¬ simply inverts every label in the trie.

primcorec + ∶∶ α lang→ α lang→ α lang where

o (L + K) = o L ∨ o K
δ (L + K) = λx. δ L x + δ K x

primcorec ∩ ∶∶ α lang→ α lang→ α lang where

o (L ∩ K) = o L ∧ o K
δ (L ∩ K) = λx. δ L x ∩ δ K x

primcorec ¬ ∶∶ α lang→ α lang where

o (¬ L) = ¬ o L
δ (¬ L) = λx. ¬ δ L x

The attentive reader will have noticed: we are about to rediscover Brzozowski
derivatives and the acceptance test on regular expressions in the destructor view
equations for the selectors δ and o. There is an important difference though: while
Brzozowski derivatives work with syntactic objects, our tries are semantic objects
on which equality denotes language equivalence. For example, we will later prove
∅ + r = r for tries, while ∅ + r /= r holds for regular expressions. The coinductive

3.2. Regular Operations on Tries 21

⊺

⊺ �

.

a b

a b a b

o K + K. . .

K. . .
+ o K � + ∅. . .

.

a

b
a b a b

Figure 3.2: Tries for L (left) and the concatenation L ⋅ K (right)

view reveals that derivatives and the acceptance test are the two fundamental in-
gredients that completely characterize regular languages and arise naturally even
when only considering the semantics.

3.2.2 Reducing Corecursion Up-To to Primitive Corecursion

Concatenation ⋅ is next on the list of regular operations that we want to define
on tries. Thinking of Brzozowski derivatives and the acceptance test, we would
usually specify it by the following two equations.

o (L ⋅ K) = o L ∧ o K
δ (L ⋅ K) = λx. (δ L x ⋅ K) + (if o L then δ K x else ∅)

A difficulty arises here, since this specification is not primitively corecursive—the
right hand side of the second equation contains a corecursive call but not at the
topmost position (which is + here). We call this kind of corecursion up to +.

Without tool support for corecursion up-to, concatenation must be defined differ-
ently—as a composition of other primitively corecursive operations. Intuitively,
we would like to separate the above δ-equation into two along the + and sum them
up afterwards. Technically, the situation is more involved. Since the δ-equation is
corecursive, we can not just create two tries by primitive corecursion.

Figure 3.2 depicts the trie that should result from concatenating an arbitrary trie
K to the concrete given trie L. Procedurally, the concatenation must replace every
subtree T of L with label ⊺ at the root (those are positions where words from L end)
by the trie U + K where U is the trie obtained from T by changing its root from ⊺
to o K. For uniformity with the above δ-equation, we imagine subtrees F of L with
label � at the root as also being replaced by F + ∅, which, as we will prove later,
has the same effect as leaving F alone.

Figure 3.3 presents one way to bypass the restrictions imposed by primitive core-
cursion. We are not allowed to use + after proceeding corecursively, but we may
arrange the arguments of + in a broader trie over a doubled alphabet formally
modeled by pairing letters of the alphabet with a Boolean flag. In Figure 3.3 we
write a for (a, ⊺) and a′ for (a, �). Because it defers the summation, we call this
primitively corecursive procedure deferred concatenation ⋅̂.

22 Chapter 3. Formal Languages, Coinductively

o K

o K
δ K a. . .

�
δ K b.

a b
a′ b′

a b
a′ b′

a b
a′ b′

δ K a. . . δ K b. . . ∅. . . ∅. . .

Figure 3.3: Trie for deferred concatenation L ⋅̂ K

primcorec ⋅̂ ∶∶ α lang→ α lang→ (α× bool) lang where

o (L ⋅̂ K) = o L ∧ o K
δ (L ⋅̂ K) = λ(x, b). if b then δ L x ⋅̂ K else if o L then δ K x ⋅̂ ε else ∅

Note that unlike in the Figure 3.3, where we informally plug the trie δ K x as some
x′-subtrees, the formal definition must be more careful with the types. More pre-
cisely, δ K x is of type α lang, while something of type (α× bool) lang is expected.
This type mismatch is resolved by further concatenate ε to δ K x (again in a de-
ferred fashion) without corrupting the intended semantics.

Once the trie for the deferred concatenation has been build, the desired trie for
concatenation can be obtained by a second primitively corecursive traversal that
sums the x- and x′-subtrees before proceeding corecursively.

primcorec ⊕̂ ∶∶ (α× bool) lang→ α lang where

o (⊕̂ L) = o L
δ (⊕̂ L) = λx. ⊕̂ (δ L (x, ⊺) + δ L (x, �))

Finally, we can define the concatenation as the composition of ⋅̂ and ⊕̂. The earlier
standard selector equations for ⋅ are provable for this definition.

definition ⋅ ∶∶ α lang→ α lang→ α lang where

L ⋅ K = ⊕̂ (L ⋅̂ K)

The situation with iteration is similar. The selector equations following the Brzo-
zowski derivative of L∗ yield a non-primitively recursive specification. In more
detail, it is corecursive up to ⋅.

o (L∗) = ⊺
δ (L∗) = λx. δ L x ⋅ L∗

As before, the restriction is circumvented by altering the operation slightly. We de-
fine the binary operation deferred iteration L ∗̂ K, whose language should represent
L ⋅ K∗ (although we have not defined _∗ yet). When constructing the subtrees of

3.2. Regular Operations on Tries 23

L ∗̂ K we keep pulling copies of the second argument into the first argument before
proceeding corecursively (the second argument itself stays unchanged).

primcorec ∗̂ ∶∶ α lang→ α lang→ α lang where

o (L ∗̂ K) = o L
δ (L ∗̂ K) = λx. (δ (L ⋅ (ε + K)) x) ∗̂ K

Supplying ε as the first argument to ∗̂ defines iteration that satisfies the original
selector equations.

definition _∗ ∶∶ α lang→ α lang where

L∗ = ε ∗̂ L

We have defined all the standard regular operations on tries! Later we will prove
that those definitions satisfy the axioms of Kleene algebra, meaning that the behave
as expected. Already now we can compose the operation to define new tries, for
example the introductory even = ((A a + A b) ⋅ (A a + A b))∗.

Let us step back a little bit: why was it possible to reduce the above corecursive
up-to equations to primitive corecursion? The formal answer to this question is
beyond the scope of this thesis. Still we try to convey a vague intuition here. The
reduction was possible because the up-to operations + and ⋅ are so called friendly
operations [17]. An operation is friendly if, under lazy evaluation, it does not peek
too deeply into its arguments, before producing at least one constructor.

For example, L + K = L (o L ∨ o K) (λx. δ L x + δ K x) destructs only one layer of
constructors, in order to produce the topmost L. In contrast the primitively corecur-
sive equation L! = L (o L) (λx. (δ (δ L x) x)!) destructs two layers of constructors
(via δ) before producing one and is therefore not friendly. Indeed, we will not be
able to reduce the equation bad = L ⊺ (λ_. bad!) (which is corecursive up-to !) to
a primitively corecursive specification. And there is a good reason for it: bad is
not uniquely specified by the above equation—assigning it a unique value through
primitive corecursion would immediately lead to a contradiction.

Friendly operations are formally captured using parametricity [17]. Automation in
Isabelle for the large class of friendly functions is underway at the moment of writ-
ing. The employed reduction to primitive corecursion follows an abstract, category
theory inspired construction. Yet, what it yields in practice is very close to what
we have seen on the example of concatenation. (In contrast, the iteration example
takes some shortcuts, that the abstract view does not offer.)

Beyond Regular Languages Before we turn to proving, let us exercise one more
corecursive definition. Earlier, we have assigned each trie a set of lists via the func-
tion out. Primitive corecursion enables us to define the converse operation.

24 Chapter 3. Formal Languages, Coinductively

primcorec in ∶∶ α list set→ α lang where

o (in L) = [] ∈ L
δ (in L) = λx. in {w ∣ x # w ∈ L}

The function out and in are both bijections. We show this by proving that their com-
positions (either way) are both the identity. One direction, out (in L) = L, follows
by set extensionality and a subsequent induction on words. The reverse direction
requires a proof by coinduction, which is the topic of the next section.

Using in we can turn every (even undecidable) set of lists into a trie. This is some-
what counterintuitive, since, given a concrete trie, its word problem seems easily
decidable (via the function ∈∈). But of course in order to compute the trie out a list of
sets L via in the word problem for L must be solved—we are reminded that HOL is
not a programming language where everything is executable, but a logic in which
we write down specifications (not programs).

For the regular operations from the previous section the situation is different. For
example, Isabelle’s code generator can produce valid Haskell code that evaluates
[a, b, a, a] ∈∈ (A a ⋅ (A a + A b))∗ to ⊺.

3.3 Proving Equalities on Tries

We have seen the definitions of many operations, justifying their meaningfulness
by appealing to the reader’s intuition. This is often not enough to guarantee cor-
rectness, especially if we have a theorem prover at hand. So let us formally prove
in Isabelle that the regular operations on tries form a Kleene algebra by proving
Kozen’s famous axioms [72] as (in)equalities on tries.

Codatatypes are equipped with the perfect tool for proving equalities: the coin-
duction principle. Intuitively, the coinduction principle says that the existence of
a relation R that is closed under the codatatype’s observations (given by selectors)
implies that elements related by R are equal. In other words, if we cannot distin-
guish elements of a codatatype by (finite) observations, they must be equal. For-
mally, for our codatatype α lang we obtain the following coinduction rule.

R L K ∀L1 L2. R L1 L2 Ð→ o L1 ←→ o L2 ∧ ∀x. R (δ L1 x) (δ L2 x)
L = K

The second assumption of this rule formalizes the notion of being closed under
observations. Concretely, if two tries are related then their root’s labels are the same
and all their subtrees are related. A relation that satisfies this assumption is called
a bisimulation. Thus, proving an equation by coinduction amounts to exhibiting a
bisimulation witness that relates the left and the right hand sides.

3.3. Proving Equalities on Tries 25

Let us observe the coinduction rule, called coinductlang below, in action. We prove
the Kleene algebra axiom that the empty language is the left identity of union via a
detailed Isar proof that is accepted by Isabelle.

theorem ∅ + L = L
proof (rule coinductlang)

def R L1 L2 = (∃K. L1 = ∅ + K ∧ L2 = K)

show R (∅ + L) L by simp

fix L1 L2
assume R L1 L2
then obtain K where L1 = ∅ + K and L2 = K by simp
then show o L1 ←→ o L2 ∧ ∀x. R (δ L1 x) (δ L2 x) by simp

qed

The proof has three parts. First, we supply a definition of a witness relation R.
Second, we prove that R relates the left and the right hand side. Third, we prove
that R is a bisimulation. While the second and the third part is rather automatic,
the first one a priori seems to require some ingenuity.

Let us delve into the automatic part first. Proving R (∅ + L) L for our particular
definition of R is trivial after instantiating the existentially quantified K with L.
Proving the bisimulation property is barely harder: for two tries L1 and L2 related
by R we need to show o L1 ←→ o L2 and∀x. R (δ L1 x) (δ L2 x). Both properties follow
by simple calculations rewriting L1 and L2 in terms of a trie K, whose existence is
guaranteed by R L1 L2, and simplifying with the selector equations for + and ∅.

o L1 ←→ o (∅ + K)←→ o ∅ ∨ o K ←→ � ∨ o K ←→ o K ←→ o L2

R (δ L1 x) (δ L2 x)←→ R (δ (∅ + K) x) (δ K x)
←→ R (δ ∅ x + δ K x) (δ K x)←→ R (∅ + δ K x) (δ K x)
←→ ∃K′. ∅ + δ K x = ∅ + K′ ∧ δ K x = K′ ←→ ⊺

The last step is justified by instantiating K′ with δ K x.

How did our definition of R come about? In general, when proving a conditional
equation P x Ð→ l x = r x by coinduction, where x denotes a list of variables oc-
curring freely in the equation, the canonical choice for the bisimulation witness is
R a b = (∃x. a = l x ∧ b = r x ∧ P x). There is no guarantee that this definition
yields a bisimulation. However, after performing a few proofs by coinduction, this
particular pattern emerges as a natural first choice to try.

Indeed, the choice is so natural, that it was worth to automate it in the coinduction
proof method [14]. This method instantiates the coinduction rule coinductlang with

26 Chapter 3. Formal Languages, Coinductively

the canonical bisimulation witness constructed from the goal, where the existen-
tially quantified variables must be given explicitly using the arbitrary modifier.
Then it applies the instantiated rule in a resolution step, discharges the first as-
sumption, and unpacks the existential quantifiers from R in the remaining subgoal
(the obtain step in the above Isar proof). Using this convenience many proofs, in-
cluding the one above, collapse to an automatic one-liner. Some examples follow.

theorem ∅ + L = L
by (coinduction arbitrary ∶ L) auto

theorem L + L = L
by (coinduction arbitrary ∶ L) auto

theorem (L1 + L2) + L3 = L1 + L2 + L3
by (coinduction arbitrary ∶ L1 L2 L3) auto

theorem in (out L) = L
by (coinduction arbitrary ∶ L) auto

theorem in (L ∪ K) = in L + in K
by (coinduction arbitrary ∶ L K) auto

As indicated earlier, sometimes the coinduction method does not succeed. It is in-
structive to consider one example where this is the case: o LÐ→ ε + L = L.

If we attempt to prove the above statement by coinduction instantiated with the
canonical bisimulation witness R L1 L2 = (∃K. L1 = ε + K ∧ L2 = K ∧ o K), after
some simplification we are stuck with proving that R is a bisimulation.

R (δ L1 x) (δ L2 x)←→ R (δ (ε + K) x) (δ K x)
←→ R (δ ε x + δ K x) (δ K x)←→ R (∅ + δ K x) (δ K x)
←→ R (δ K x) (δ K x)←→ ∃K′. δ K x = ε + K′ ∧ δ K x = K′ ∧ o K′

The remaining goal is not provable: we would need to instantiate K′ with δ K x, but
then, we are left to prove o (δ K x), which we cannot deduce (we only know o K).
If we, however, instantiate the coinduction rule with R

=

L1 L2 = R L1 L2 ∨ L1 = L2, we
are able to finish the proof. This means that our canonical bisimulation witness R
is not a bisimulation, but R

=

is. In such cases R is called a bisimulation up to equality.

Instead of modifying the coinduction to instantiate the rule coinductlang with R
=

, it is
more convenient to capture this improvement directly in the coinduction rule. This
results in the following rule which we call coinduction up to equality or coinduct=lang.

R L K ∀L1 L2. R L1 L2 Ð→ o L1 ←→ o L2 ∧ ∀x. R
=(δ L1 x) (δ L2 x)

L = K

3.3. Proving Equalities on Tries 27

Note that coinduct=lang is not just an instantiation of coinductlang. Otherwise all occur-
rences of R in coinductlang would have been replaced with R

=

in coinduct=lang. Instead,
after the instantiation, the first assumption is simplified to R L K—we would not
use coinduction in the first place, if we could prove R

=

L K by reflexivity. Simi-
larly, the reflexivity part in the occurrence on the left of the implication in the sec-
ond assumption is needless and therefore eliminated. Using this coinduction up to
equality rule, we have regained the ability of writing one line proofs.

theorem o LÐ→ ε + L = L
by (coinduction arbitrary ∶ L rule ∶ coinduct=lang) auto

The next hurdle, however, is not long in coming. Suppose that we already have
proved the standard selector equations for concatenation ⋅. (This required finding
some auxiliary properties of ⋅̂ and ⊕̂ but was an overall straightforward usage of
coinduction up to equality.) Next, we want to reason about ⋅. For example, we
prove its distributivity over +: (L + K) ⋅ M = (L ⋅ M) + (K ⋅ M). As before, we are
stuck proving that the canonical bisimulation witness R L1 L2 = (∃L′ K′ M′. L1 =
(L′ + K′) ⋅ M′ ∧ L2 = (L′ ⋅ M′) + (K′ ⋅ M′)) is a bisimulation (and this time even for
up to equality).

R
=(δ L1 x) (δ L2 x)←→ R

=(δ ((L′ + K′) ⋅ M′) x) (δ ((L′ ⋅ M′) + (K′ ⋅ M′)) x)

←→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
=((δ L′ x + δ K′ x) ⋅ M′)
((δ L′ x ⋅ M′) + (δ K′ x ⋅ M′)) if ¬o L′ ∧ ¬o K′

R
=((δ L′ x + δ K′ x) ⋅ M′ + δ M′ x)
((δ L′ x ⋅ M′ + δ M′ x) + (δ K′ x ⋅ M′)) if o L′ ∧ ¬o K′

R
=((δ L′ x + δ K′ x) ⋅ M′ + δ M′ x)
((δ L′ x ⋅ M′) + (δ K′ x ⋅ M′ + δ M′ x)) if ¬o L′ ∧ o K′

R
=((δ L′ x + δ K′ x) ⋅ M′ + δ M′ x)
((δ L′ x ⋅ M′ + δ M′ x) + (δ K′ x ⋅ M′ + δ M′ x)) if o L′ ∧ o K′

←→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⊺ if ¬o L′ ∧ ¬o K′

R
=((δ L′ x + δ K′ x) ⋅ M′ + δ M′ x)
((δ L′ x ⋅ M′ + δ K′ x ⋅ M′) + δ M′ x) otherwise

The remaining subgoal cannot be discharged by the definition of R. In principle it
could be discharged by equality (the two tries are equal), but this is almost exactly
the property we originally started proving, so we have not simplified the problem
by coinduction but rather are going in circles here. However, if our relation could
somehow split its arguments across the outermost +, we could prove the left pair
being related by R and the right pair by =. The solution is easy: we allow the

28 Chapter 3. Formal Languages, Coinductively

relation to do just that. Therefore, we define the congruence closure R
+

of a relation
R under + inductively by the following rules.

L = K
R
+

L K
R L K
R
+

L K
R
+

L K
R
+

K L
R
+

L1 L2 R
+

L2 L3

R
+

L1 L3

R
+

L1 K1 R
+

L2 K2

R
+(L1 + L2) (K1 + K2)

The closure R
+

is then used to strengthen the coinduction rule, just as the earlier
reflexive closure R

=

strengthening. Note that the closure R
=

can also be viewed as
inductively generated by the first two of the above rules. In summary, we obtain
coinduction up to congruence of +, denoted by coinduct+lang.

R L K ∀L1 L2. R L1 L2 Ð→ o L1 ←→ o L2 ∧ ∀x. R
+(δ L1 x) (δ L2 x)

L = K

As intended this rule makes the proof of distributivity into an another automatic
one-liner. This is due to the fact that our new proof principle, coinduction up to
congruence of +, matches exactly the definitional principle of corecursion up to +
used in the selector equations of ⋅.

theorem (L + K) ⋅ M = (L ⋅ M) + (K ⋅ M)
by (coinduction arbitrary ∶ L K M rule ∶ coinduct+lang) auto

For properties involving iteration _∗, whose selector equation are corecursive up
to ⋅, we will need a further strengthening of the coinduction rule (using the con-
gruence closure under ⋅). Overall, the most robust solution to keep track of the
different rules is to maintain a coinduction rule up to all previously defined opera-
tion on tries: we define R

★

to be the congruence closure of R under +, ⋅, and _∗ and
then use the following rule for proving.

R L K ∀L1 L2. R L1 L2 Ð→ o L1 ←→ o L2 ∧ ∀x. R
★(δ L1 x) (δ L2 x)

L = K

We will not spell out all axioms of Kleene algebra [72] and their formal proofs [110]
here. Most proofs are automatic; some require a few manual hints in which order
to apply the congruence rules. Note that the axioms of Kleene algebra also contain
some inequalities, such as ε + L ⋅ L∗ ≤ L∗, and even conditional inequalities, such
as L + M ⋅ K ≤ M Ð→ L ⋅ K∗ ≤ M. However, L ≤ K is defined as L + K = K, such that
proofs by coinduction also are applicable here.

3.4 Coalgebraic Terminology

We briefly connect the intuitive notions, such as tries, from earlier sections with
the key coalgebraic concepts and terminology that is usually used to present this

3.4. Coalgebraic Terminology 29

α
s //

f
��

α F
mapF f
��

β
t // β F

Figure 3.4: Commutation property of a coalgebra morphism

view on formal languages. The working formalizer is still the target audience of
this section and is expected to learn how particularly useful abstract objects gave
rise to concrete tools in Isabelle/HOL. More theoretical and detailed introductions
to coalgebra can be found elsewhere [62, 100].

Given a functor F an (F-)coalgebra is a carrier object A together with a map A→ F A—
the structural map of a coalgebra. In the context of higher-order logic—that is in the
category of types1—a functor is a type constructor F together with a map function
mapF ∶∶ (α → β) → α F → β F that preserves identity and composition: mapF id = id
and mapF (f ○ g) = mapF f ○mapF g. An F-coalgebra in HOL is therefore simply a
function s ∶∶ α → α F. A function f ∶∶ α → β is a coalgebra morphism between two
coalgebras s ∶∶ α → α F and t ∶∶ β → β F if it satisfies the commutation property
t ○ f = mapF f ○ s, also depicted by the commutative diagram in Figure 3.4.

A particularly useful coalgebra is the final (F-)coalgebra: an F-coalgebra to which
there exists an unique morphism from any other coalgebra. Not all functors F ad-
mit a final coalgebra. Two different final coalgebras are necessarily isomorphic.
Final coalgebras are interesting, because in Isabelle/HOL they correspond to co-
datatypes. Isabelle’s facility for defining codatatypes maintains a large class of
functors—bounded natural functors [116]—for which a final coalgebra does exists.
Not only that, for any bounded natural functor F, Isabelle can construct its final
coalgebra with the codatatype CF as the carrier and define a bijective constructor
CF ∶∶ CF F → CF and the inverse destructor DF ∶∶ CF → CF F. The latter takes the role
of the structural map of the coalgebra.

codatatype CF = CF (DF ∶ CF F)

Finally, we are ready to connect these abstract notions to our tries. The codatatype
of tries α lang is the final coalgebra of the functor β D = bool× (α→ β) with the asso-
ciated map function mapD g = id × (λ f . g ○ f), where (f × g) (x, y) = (f x, g y). The
structural map of this final coalgebra is the function DD = ⟨o, δ⟩, where ⟨ f , g⟩ x =
(f x, g x).

The finality of α lang gives rise to the definitional principle of primitive corecursion.
In Isabelle this principle is incarnated by the primitive corecursor corec ∶∶ (τ →
τ D)→ τ→ α lang, that assigns the given D-coalgebra the unique morphism from it

1This category consists of types as objects and of functions between types as arrows.

30 Chapter 3. Formal Languages, Coinductively

τ
s //

corec s
��

τ D
mapD (corec s)
��

α lang
⟨o, δ⟩ // α lang D

Figure 3.5: Unique morphism corec s to the final coalgebra (α lang, ⟨o, δ⟩)

to the final coalgebra. In other words, the primitive corecursor allows us to define
functions of type τ → α lang by providing an D-coalgebra on τ, i.e. a function of
type τ → bool × (α → τ) that essentially describes a deterministic (not necessarily
finite) automaton without an initial state. To clarify this automaton analogy, it is
customary to present the F-coalgebra s as two functions s = ⟨o, d⟩ with τ being the
states of the automaton, o ∶ τ → bool denoting accepting states, and d ∶ α → τ → τ

being the transition function. From a given s, we uniquely obtain the function
corec s that assigns to a separately given initial state t ∶ τ the language corec s t ∶
α lang and makes the diagram in Figure 3.5 commute.

The primcorec command [14] reduces a user given specification to a non-recursive
definition using the corecursor. For example, the union operation + is internally de-
fined as λL K. corec (λ(L, K). (o L ∧ o K, λa. (δ L a, δ K a))) (L, K). The D-coalgebra
given as the argument to corec resembles the right hand sides of the selector equa-
tions for + (with the corecursive calls stripped away). As end users, most of the
time we are happy being able to write the high-level corecursive specifications,
without having to explicitly supply coalgebras.

It is worth noting that the final coalgebra α lang itself corresponds to the automaton,
whose states are languages, acceptance is given by o L = o L, and the transition
function by d a L = δ L a. For this definitions, we obtain corec ⟨o, d⟩ (L ∶ α lang) =
L. For regular languages this automaton corresponds to the minimal automaton
(since equality on tries corresponds to language equivalence), which is finite by the
Myhill-Nerode theorem. This correspondence is not very practical though, since
we typically label states of automata with something finite, in particular not with
languages (represented by infinite tries).

A second consequence of the finality of α lang is the coinduction principle that we
have seen earlier. It follows from the fact that final coalgebras are quotients by
bisimilarity, where bisimilarity is defined as the existence of a bisimulation relation.

Inspired by the coalgebraic view on formal languages, we tackle deciding their
equivalence generically in the next chapter.

You don’t have to be a genius or a visionary
or even a college graduate to be successful.
You just need a framework and a dream.

— Michael Dell (1999)

Chapter 4

Language Equivalence Framework

Our dream is deciding equivalence of regular languages and in this chapter we
present a formalized framework for doing so. The central idea of the generic algo-
rithm is rooted in the coinduction principle coinductlang from the previous chapter.
Essentially, the algorithm iteratively constructs a bisimulation.

4.1 The Algorithm, Informally

Before presenting our abstract solution, we informally describe what the decision
procedure does when instantiated with regular expressions, using for the latter the
notation introduced in Chapter 2. The coalgebraic procedure for regular expres-
sion equivalence iteratively constructs a relation P ∶ αRE → αRE → bool whose
direct image under the regular expressions’ semantics L is a bisimulation. For ex-
ample, suppose we want to prove the regular expressions r and s being equivalent.
We start with the pair (r, s), check whether both are consistently accepting the empty
word via o r ←→ o s and add it to the relation P. Then we close P under the pairwise
Brzozowski derivative δ for all letters of the alphabet. Whenever a new pair (t, u)
is added to P, it is checked to fulfill o t ←→ o u. New means here that the pair is
different from all already explored pairs modulo some syntactic equivalence rela-
tion R that is finer than language equivalence, such as associativity, commutativity,
and idempotence (ACI) of the + constructor. The choice of R will be crucial for the
termination and the performance of the algorithm. Once P is closed under deriva-
tives and all empty word acceptance checks have been passed we know that it is
a (syntactic) bisimulation and therefore by coinduction the languages of the input
regular expressions r and s coincide.

Alternatively, one can view this procedure as the well-known product automaton
construction, where one regards the derivatives as an implicit or lazy description
of an automaton whose states are labeled with expressions. Language equivalence
means then o r ←→ o s for all states (r, s) of this product automaton. On the other
hand, using an automaton usually implies that one is interested in transitions be-

31

32 Chapter 4. Language Equivalence Framework

a∗
ε + a ⋅ a∗

ε ⋅ a∗
∅ + ε ⋅ a∗

∅ ⋅ a∗ + ε ⋅ a∗

∅ + ∅ ⋅ a∗ + ε ⋅ a∗

∅ ⋅ a∗ + ∅ ⋅ a∗ + ε ⋅ a∗

∅ + ∅ ⋅ a∗ + ∅ ⋅ a∗ + ε ⋅ a∗

∅ ⋅ a∗

∅ + ∅ ⋅ a∗

∅ ⋅ a∗ + ∅ ⋅ a∗

∅ + ∅ ⋅ a∗ + ∅ ⋅ a∗

∅ ⋅ a∗ + ∅ ⋅ a∗ + ∅ ⋅ a∗

∅ + ∅ ⋅ a∗ + ∅ ⋅ a∗ + ∅ ⋅ a∗

δ a

δ a

δ a ACI

δ b

δ b

δ b

ACI ACI

δ a
δ b

(a) Product automaton/bisimulation modulo ACI

ε ⋅ a∗
∅ + ε ⋅ a∗

∅ ⋅ a∗ + ε ⋅ a∗

∅ + ∅ ⋅ a∗ + ε ⋅ a∗

a∗
ε + a ⋅ a∗

∅ ⋅ a∗

∅ + ∅ ⋅ a∗

∅ ⋅ a∗ + ∅ ⋅ a∗

∅ + ∅ ⋅ a∗ + ∅ ⋅ a∗

a∗
a∗

∅
∅

δ a

δ a

δ b

δ b
ACI∅ε

ACI∅ε

ACI∅ε

ACI∅εδ a
δ b

(b) Product automaton/bisimulation modulo ACI∅ε

Figure 4.1: Checking the equivalence of a∗ and ε + a ⋅ a∗ for Σ = {a, b}

tween states. We are not really interested in that, but only in the state space of the
product automaton (given by the relation P above). Thus, the bisimulation termi-
nology is more suitable.

We observe the decision procedure at work, before we tackle its formal (and ab-
stract) definition by looking at the regular expressions a∗ and ε + a ⋅ a∗ for some
a ∈ Σ = {a, b}. For presentation purposes, the correspondence of derivatives to
automata is useful. Figure 4.1 shows two automata, the states of which are equiva-
lence classes of pairs of regular expressions indicated by a dashed fringe (which is
omitted for singleton classes). The equivalence classes of automaton (a) are mod-
ulo ACI, while those of automaton (b) are modulo a stronger relation ACI∅ε, that for
example also relates ∅ + r with r, ∅ ⋅ r with ∅, and ε ⋅ r with r and thereby makes
the automaton smaller. Transitions correspond to pairwise derivatives and dou-

4.2. Coalgebras as Locales 33

bled margins denote states for which the associated pairs of regular expressions are
pairwise accepting the empty word. The absence of pairs (r, s) for which r is ac-
cepting the empty word and s is not accepting it (or vice versa) proves the language
equivalence of all pairs in the automaton, including the initial pair (a∗, ε + a ⋅ a∗).

Let us mention an obvious performance deficit of our algorithm. The algorithm
constructs a bisimulation (not even a bisimulation up to equality). This effectively
means that even when applied on two identical expressions, the algorithm would
still enumerate all derivatives. There is a whole hierarchy of possible improve-
ments: bisimulation up to equality, equivalence, congruence, and congruence and
context, which have been successfully employed in unverified derivative-based de-
cision procedures [21, 96]. However, when starting to verify an algorithm one has
to settle for a solution somewhere in between of efficiency and simplicity.

4.2 Coalgebras as Locales

The above procedure is not new [49] and its formalization and proof of soundness
in Isabelle [76] precedes the work in this thesis. Indeed this early formalization was
our starting point for carrying out several generalizations. First, we have refined
the procedure to cover extended regular expressions and additionally proved com-
pleteness [113] (see also Chapter 6). Second, we have abstracted the procedure over
the kind of derivatives, thereby enabling, for example, the usage of partial deriva-
tives instead of Brzozowski derivatives [89] (Chapter 5). Third, we have also gener-
alized the syntactic structures that are checked for equivalence [111]. This enables
deciding equivalence of logical formulas instead of regular expressions (Chapter 8).

What we present below culminates this series of generalizations by additionally
allowing the two structures that are checked for equivalence to be different. This
can be used to check whether formulas of different logics (or regular expressions)
denote the same regular language. To achieve this, our algorithm is parametrized
by two syntactic D-coalgebras (as introduced in Section 3.4), both equipped with
their own notions of derivatives.

This requires the notion of a D-coalgebra to be formalized in Isabelle. This is done
by means of the following locale, to be read column-wise.

locale coalgD =
fixes Σ ∶∶ α list
and i ∶∶ τ→ σ

and o ∶∶ σ→ bool
and d ∶∶ α→ σ→ σ

and Lσ ∶∶ σ→ α lang
and wfσ ∶∶ σ→ bool
and Lτ ∶∶ τ→ α lang
and wfτ ∶∶ τ→ bool

assumes distinct Σ
and wfτ t Ð→ wfσ (i t)
and wfτ t Ð→ Lσ (i t) = Lτ t
and wfσ s ∧ w ∈∈ Lσ sÐ→ w ∈ (set Σ)∗
and wfσ s ∧ a ∈ set Σ Ð→ wfσ (d a s)
and wfσ s ∧ a ∈ set Σ Ð→ Lσ (d a s) = δ (Lσ s) a
and wfσ sÐ→ o s = o (Lσ s)

34 Chapter 4. Language Equivalence Framework

This locale is more complex than one would expect at first, so let us slowly under-
stand the design decisions behind its parameters and assumptions. The parameters
contain three type variables: α as the type of letters, τ as the type of structures about
which we want to reason (for example regular expressions), and σ as the type of
modified structures for which we actually supply the coalgebra (for example regu-
lar expressions normalized in some way).

We assume that the alphabet is given by the list Σ. This simultaneously ensures
that the alphabet is finite and allows us to take subsets of the type α as the alphabet
(without having to define a subtype of α). The list Σ is assumed to be duplicate-free.

The initial transformation i translates τ-structures into σ-structures. Later, i will
be instantiated either with an identity, or with a certain normalization function, or
sometimes even with a real translation (of formulas into regular expressions).

The actual D-coalgebra is given by the two functions o and d. Note that in prin-
ciple, we could use this (syntactic) coalgebra to define a language semantics of σ-
structures as corec ⟨o, d⟩ ∶∶ σ→ α lang. However, we prefer to put the burden of sup-
plying the semantics of σ-structures via the Lσ parameter on the side of whoever
interprets the locale for two reasons. First, a σ-structure will typically be an induc-
tively defined piece of syntax. Therefore, an inductive definition of the semantics
will be a better fit on the interpreter’s side than the above uniform coinductive def-
inition. Second, we want to allow that not all σ-structures are wellformed (again
bypassing a subtype construction). For non-wellformed structures the semantics
then does not need to be defined at all. Wellformedness is specified by yet another
parameter wfσ.

The semantics of τ-structures (as well as the wellformedness predicate wfτ) must
also be supplied separately . But since we do not require a coalgebraic structure
on τ, there is no other way to obtain the semantics anyway.

The assumptions of the locale relate its parameters in a straightforward fashion. In
particular they formalize the preservation of wellformedness by i and d, and the
expected semantic effects of i, d, and o on wellformed structures.

Note that unlike in the concrete description of the procedure, there is no notion of
an equivalence relation modulo which σ-structures are compared. Later the equiv-
alence relation will be directly captured in the very notion of σ-structures, either
instantiating them with equivalence classes directly or with canonical representa-
tives computed via a normalization function.

In the context of coalgD, a decision procedure for the word problem (that is match-
ing) on τ structures is easy to define and prove correct. The formal proof by induc-
tion takes one line and is omitted (as most of the formal proofs will be).

definition (in coalgD) match ∶∶ τ→ α list→ bool where
match t w = o (fold d w (i t))

4.3. The Algorithm, Formally 35

theorem (in coalgD) match r w←→ w ∈∈ Lτ t

When instantiating the locale parameters o, d, and i with executable functions, we
obtain an executable algorithm for matching via Isabelle’s code generator.

We strive for a decision procedure for language equivalence and not matching. Let
us tackle this next. To be as flexible as possible, we assume that we are given two
coalgebras—each in form of the locale coalgD—that do not even need to share the
same alphabet. This is formalized by another locale.

locale coalgsD =
A ∶ coalgD +
B ∶ coalgD +
fixes ▽ ∶∶ A.α→ B.α→ bool
assumes a▽ bÐ→ a ∈ set A.Σ ←→ b ∈ set B.Σ

The additional parameter ▽ relates letters of the two (potentially different) alpha-
bets in an alphabet-respecting fashion. A priori, it is unclear what language equiv-
alence of structures over different alphabet should be. The constant ▽ helps to
clarify this by defining ▽-equivalence as follows.

definition (in coalgsD) ≡▽ ∶∶ A.α lang→ B.α lang→ bool where
L ≡▽ K ←→ ∀w, v. w▽∗ vÐ→ w ∈∈ L←→ v ∈∈ K

Here, the relation ▽∗ denotes ▽ lifted to words. More precisely we define, w▽∗ v =
∣w∣ = ∣v∣ ∧ (∀i < ∣v∣. w[i]▽ v[i]). Two languages are then ▽-equivalent if all pairs
of words of the same length, that are related letterwise by ▽, behave equally with
respect to language membership. Note that ▽-equivalence also caters for a nice
coinductive characterization, in the spirit of the coinduction rules for α lang. In this
characterization o and δ denote the semantic operations (selectors) on tries.

R L K ∀L1 L2. R L1 L2 Ð→ o L1 ←→ o L2 ∧ (∀a b. a▽ bÐ→ R (δ L1 a) (δ L2 b))
L ≡▽ K

It is easy to show that instantiating ▽ with equality, yields the usual notion of
language equivalence as trie (or set) equality: L ≡= K ←→ L = K.

4.3 The Algorithm, Formally

In the context of coalgsD, we can finally introduce our procedure for checking ▽-
equivalence of t ∶∶ A.τ and u ∶∶ B.τ. Therefore, we iteratively enumerate the follow-
ing set of pairwise derivatives of A. i t and B. i u, which constitutes a bisimulation

36 Chapter 4. Language Equivalence Framework

given that each pair (r ∶∶ A.σ, s ∶∶ B.σ) in this set is consistently accepting—that is it
satisfies A.o r ←→ B.o s.

{(fold A.d w (A. i t), fold B.d v (B. i u)) ∣ w ∈ (set A.Σ)∗ ∧ v ∈ (set B.Σ)∗ ∧ w▽∗ v}

So far, there is no guarantee that this set is finite. We postpone the discussion of
termination until after the presentation of the enumeration. Here is a recursive
worklist algorithm that performs the enumeration, given as functional pseudocode.

Σ ∶∶ (A.α×B.α) list
Σ = [(a, b) ∣ a← A.Σ, b← B.Σ, a▽ b]

closure ∶∶ (A.σ×B.σ) list× (A.σ×B.σ) set→ bool
closure ([], _) = ⊺
closure ((r, s) # ws, P) = if A.o r /= B.o s then � else

let

add (a, b) (ws, P) =
let rs = (A.d a r, B.d b s)
in if rs ∈ P then (ws, P) else (rs # ws, {rs}∪ P)

in closure (fold add Σ (ws, P))

eqv ∶∶ A.τ→ B.τ→ bool
eqv t u = wfτ t ∧ wfτ u ∧ let rs0 = (A. i t, B. i u) in closure ([rs0], {rs0})

The core of the algorithm is the tail recursive closure function. It operates on a state
consisting of a worklist ws of pairs of σ-structures and a set P of so far encountered
pairs (including those that are in the worklist). The only way to terminate the
recursion is to empty the worklist. In each iteration, the head pair of the worklist is
checked to be consistently accepting and after passing this check is replaced by its
pairwise derivatives that were not previously encountered.

The above pseudocode is not yet the formalization of eqv in Isabelle/HOL. Since
HOL is a logic of total functions, in order to guarantee totality, a function has to
either be terminating or its non-terminating behavior has to be uniquely specified.
Since the conditions under which closure will terminate will be discussed only later,
we opt for the second possibility.

We can use the while combinator to redefine our equivalence check, this time for-
mally in Isabelle. In our case, the state s of the while loop has the same type
γ = (A.σ×B.σ) list× (A.σ×B.σ) set as the argument to closure. We define the argu-
ments to the while combinator b and c to obtain an executable formal definition of
closure. A further helper function s, that initializes the state of the loop, completes
the executable formal definition of the equivalence check eqv.

definition (in coalgsD) b ∶∶ γ → bool where
b ([], _) = �

4.3. The Algorithm, Formally 37

b ((r, s) # _, _) = A.o r ←→ B.o s

definition (in coalgsD) c ∶∶ γ → γ where

c ((r, s) # ws, P) =
let

add (a, b) (ws, P) =
let rs = (A.d a r, B.d b s)
in if rs ∈ P then (ws, P) else (rs # ws, {rs}∪ P)

in fold add Σ (ws, P)

definition (in coalgsD) closure ∶∶ γ → bool where
closure x = case while b c x of Some ([], _)⇒ ⊺ ∣ _⇒ �

definition (in coalgsD) s ∶∶ A.τ→ B.τ→ γ where

s t u = let rs0 = (A. i t, B. i u) in ([rs0], {rs0})

definition (in coalgsD) eqv ∶∶ A.τ→ B.τ→ bool where
eqv t u = A.wfτ t ∧ B.wfτ u ∧ closure (s t u)

Next we prove that this algorithm is sound and refutationally sound. Sound-
ness means that if eqv terminates with the result ⊺, the input τ-structure are ▽-
equivalent. Refutational soundness means that if eqv terminates with the result �,
the input τ-structure are ▽-inequivalent. Note that eqv is also logically specified to
be � in case of non-termination, however the extracted code will actually not ter-
minate in this case—Isabelle’s code generator guarantees only partial correctness.

As the key step of the proof, we note that, given two initial wellformed τ-structures
t and u, the following invariant invar holds for the states of the while loop.

definition (in coalgsD) invar ∶∶ (A.τ×B.τ)→ γ → bool where
invar (t, u) (ws, P) =

set ws ⊆ P ∧
(∀(r, s) ∈ P. ∃w ∈ (set A.Σ)∗. ∃v ∈ (set B.Σ)∗.

w▽∗ v ∧ r = fold A.d w (A. i t) ∧ s = fold B.d v (B. i u)) ∧
(∀(r, s) ∈ P∖ set ws. A.o r ←→ B.o s ∧

(∀a ∈ set A.Σ. ∀b ∈ set A.Σ. a▽ bÐ→ (A.d a r, B.d b s) ∈ P))

It is not hard to prove invar being indeed a loop invariant—that is to show that
invar (t, u) (s t u) and ∀x. invar (t, u) xÐ→ b xÐ→ invar (t, u) (c x) hold.

Then, soundness follows by coinduction (for ≡▽) where the bisimulation witness
has been instantiated with the set P (viewed as a binary relation) constructed by
the while loop. The third conjunct of invar (t, u) ([], P) immediately implies that P
is a bisimulation in the sense of the used coinduction rule. We obtain the following
formalized theorem. The assumption eqv t u also includes the termination of the
procedure and the fact that the input structures are wellformed.

38 Chapter 4. Language Equivalence Framework

theorem (in coalgsD) eqv t uÐ→ A.Lτ t ≡▽ B.Lτ u

Refutational soundness also follows from the invariant. Here we may assume that
the procedure has terminated in a state (ws, P) with a non-empty worklist. Then,
from invar (t, u) (ws, P) and ¬b (ws, P) (the only way to exit the loop), we obtain a
pair of ▽∗-related words w and v with A.match w t /←→ B.match v u. Using the char-
acteristic property of match, we deduce w ∈∈ A.Lτ t /←→ v ∈∈ B.Lτ u, which contradicts
▽-equivalence. To capture exactly refutational soundness, the formal statement has
to explicitly exclude other cases where eqv t u returns �, such as one of the input
formulas being not wellformed but also non-termination of the while loop.

theorem (in coalgsD)
A.wfτ t ∧ B.wfτ u ∧ while b c (s t u) ≠ None ∧ ¬eqv t uÐ→ A.Lτ t /≡▽ B.Lτ u

4.4 Termination

Now that partial correctness of our equivalence check is established, we can turn
our attention to termination. Clearly, from our abstract assumptions we can not
deduce that the set of all word derivatives of a σ-structure is finite, and therefore
cannot guarantee termination without further ado.

Even for our concrete algorithm description from the beginning of this section, it is
not clear if the procedure always terminates. Indeed, it often does not terminate,
when plain Brzozowski derivatives are used to compute the next step for the case
of regular expressions. However, if after each derivative step the expressions are
brought into a certain normal form the termination of the procedure is magically
guaranteed. The magic is explained by Brzozowski’s fundamental result, that there
are only finitely many distinct word derivatives modulo a certain equivalence re-
lation. We will revisit and formalize this result in the next chapter. Here, it is
important to understand that later instantiations for the parameter d of coalgD will
always be some derivative operation followed by a normalization function.

In our general setting, we add the assumption that there are only finitely many dis-
tinct (normalized) word derivatives of wellformed τ-structures in a separate locale.

locale fin_coalgD =
coalgD +
assumes wfτ t Ð→ finite {fold d w (i t) ∣ w ∈ (set Σ)∗}

As before, we want to check equivalence of two different coalgebras.

locale fin_coalgsD =
A ∶ fin_coalgD +

4.4. Termination 39

B ∶ fin_coalgD +
fixes ▽ ∶∶ A.α→ B.α→ bool
assumes a▽ bÐ→ a ∈ set A.Σ ←→ b ∈ set B.Σ

Of course, we prefer not to redefine all our machinery for equivalence checking de-
veloped within the coalgsD locale in fin_coalgsD. Indeed every instance of fin_coalgsD
can be seen as an instance of coalgsD. The locale mechanism conveniently allows us
to include everything from the less restricted locale coalgsD into the more restricted
fin_coalgsD via the sublocale command.

sublocale fin_coalgsD ≤ coalgsD

Now, the equivalence check eqv is also available in the locale fin_coalgsD. The ad-
ditional assumptions allow us to prove termination. The key idea is that in each
step of the while loop either the worklist becomes shorter or the set P is added a
new element. Note however that due to our invariant P is a subset of the finite set
{fold A.d w (A. i t) ∣ w ∈ (set A.Σ)∗}× {fold B.d v (B. i u) ∣ w ∈ (set B.Σ)∗}.

theorem (in fin_coalgsD) A.wfτ t ∧ B.wfτ uÐ→ while b c (s t u) ≠ None

Using this the refutational soundness theorem becomes a completeness property.

theorem (in fin_coalgsD) A.wfτ t ∧ B.wfτ u ∧ A.Lτ t ≡▽ B.Lτ uÐ→ eqv t u

The additional finiteness assumptions of fin_coalgsD are the hardest ones to dis-
charge. Moreover, the usage of stronger normalization functions as part of d (there-
by identifying more equivalent structures syntactically) reduces the search space of
the algorithm. Typically, the stronger the normalization, the more difficult it is to
formally prove the finiteness assumption—this is somewhat counterintuitive but
will be clarified, when we consider concrete instantiations. Often, we will even
settle for a partially correct algorithm (instantiating the locale coalgsD rather than
fin_coalgsD), in cases where we were not able to prove finiteness formally (although
we strongly believe that it holds). A verified partially correct algorithm that ter-
minates on all the tested examples is still better than an inefficient verified totally
correct algorithm that runs out of resources on all but trivial examples.

We conclude this chapter by noticing that any instance of coalgD can be seen as
an instance of coalgsD by instantiating the latter with twice the coalgebra structure
of the former and with equality for the ▽ relation. This is again expressed by a
sublocale command (also for the locales with the additional finiteness assumption)
and pulls the definition of the▽-equivalence check into the coalgD locale. In coalgD,
▽-equivalence then coincides with standard language equivalence.

40 Chapter 4. Language Equivalence Framework

sublocale coalgD X ≤ coalgsD where

A = X B = X a▽ b = (a = b)

sublocale fin_coalgD X ≤ fin_coalgsD where

A = X B = X a▽ b = (a = b)

Some people, when confronted with a problem,
think “I know, I’ll use regular expressions.”
Now they have two problems.

— Jamie Zawinski (1997)

Chapter 5

Regular Expression Equivalence

Equivalence of regular expressions is a perennial topic in computer science. Re-
cently it has spawned a number of formalized and verified decision procedures for
this task in interactive theorem provers [5,24,35,76,85]. Except for the formalization
by Braibant and Pous [24], all these decision procedures operate directly on varia-
tions of regular expressions. Although they (implicitly) build automata, the states
of the automata are labeled with regular expressions, and there is no global tran-
sition table but the next-state function is computable from the regular expressions,
resembling a lot the coalgebras in our framework. Yet all these decision procedures
look very different. Of course, the next-state functions all differ, but so do the actual
decision procedures and their correctness, completeness and termination proofs.

The primary contribution of this chapter is the instantiation of our framework from
the previous chapter with all the above approaches (Sections 5.1 and 5.2). This uni-
fies the different presentations and allows us to reuse proofs of correctness, com-
pleteness, and termination that were performed once and for all in the framework.
Further secondary contributions include:

• A new perspective on partial derivatives that recasts them as Brzozowski
derivatives followed by some rewriting (Section 5.1).

• The discovery that Asperti’s algorithm is not the one by McNaughton-Ya-
mada [82], as stated by Asperti [5], but a dual construction which appar-
ently had not been considered in the literature and which produces uniformly
smaller automata (Section 5.2).

• A linear time version (for a fixed alphabet) of Asperti’s quadratic next-state
function (Section 5.2).

• An empirical comparison of the performance of the different instantiations
(Section 5.3).

This chapter is largely based on the material presented at ITP 2014 [89].

41

42 Chapter 5. Regular Expression Equivalence

5.1 Derivatives

In 1964, Brzozowski [25] showed how to compute left quotients syntactically—as
derivatives of regular expressions. Derivatives have been rediscovered in proof
assistants by Krauss and Nipkow [76] and Coquand and Siles [35]. Our first in-
stantiations of the framework reuse infrastructure from earlier formalizations in
Isabelle [76, 113].

A refinement of Brzozowski’s approach—partial derivatives—was introduced by
Antimirov [3] and formalized by Moreira et al. [85] in Coq and by Wu et al. [119]
in Isabelle. Partial derivatives operate on finite sets of regular expressions. They
can be viewed either as a nondeterministic automaton with regular expressions
as states or as the corresponding deterministic automaton obtained by the subset
construction.

In the following, we integrate the two notions in our framework and show how
derivatives can be used to simulate partial derivatives without invoking sets ex-
plicitly.

5.1.1 Brzozowski Derivatives

Since we have already seen the definitions of Brzozowski derivatives δ and the
empty word acceptance test o for regular expressions in Chapter 2, we can imme-
diately proceed with our first instantiation of the coalgD locale. Here, we assume
the type α being finite and ordered, such that we can write as_list UNIV for the list
of all elements of α; note that set (as_list UNIV) = UNIV in this case.

interpretation coalgD where

Σ = as_list UNIV
i r = r
o r = o r
d a r = δ a r
Lσ r = Lτ r = L r
wfσ r = wfτ r = ⊺

Unfortunately, the partially correct equivalence checker that is produced by this
interpretation is completely useless in practice, because it will rarely terminate. For
example, the regular expression a∗ has infinitely many distinct derivatives, as all
derivatives with respect to words an are distinct: fold δ a1 a∗ = ε ⋅ a∗; fold δ an+1 a∗ =
∅ ⋅ a∗ + fold δ an a∗.

Fortunately, Brzozowski showed that there are finitely many equivalence classes of
derivatives modulo associativity, commutativity and idempotence (ACI) of the +
constructor. We prove that the number of distinct derivatives of r modulo ACI is
finite: finite {[fold δ w r]∼ ∣ w ∶∶ α list} where [r]∼ = {s ∣ r ∼ s} denotes the equivalence
class of r and ACI equivalence ∼ is defined inductively as follows.

5.1. Derivatives 43

r + (s + t) ∼ (r + s) + t r + s ∼ s + r r + r ∼ r

r ∼ r r ∼ s
s ∼ r

r ∼ s s ∼ t
r ∼ t

r1 ∼ s1 r2 ∼ s2
r1 + r2 ∼ s1 + s2

r1 ∼ s1 r2 ∼ s2
r1 ⋅ r2 ∼ s1 ⋅ s2

r ∼ s
r∗ ∼ s∗

ACI-equivalent regular expressions r ∼ s have the same languages, and their equiv-
alence is preserved by the derivative: δ a r ∼ δ a s for all a ∶∶ α. This enables the
following interpretation of the fin_coalgD locale that operates on ACI equivalence
classes. We obtain a first totally correct and complete equivalence checker D∼.eqv
in Isabelle/HOL.

interpretation D∼ ∶ fin_coalgD where

Σ = as_list UNIV
i r = [r]∼
o [r]∼ = o r
d a [r]∼ = [δ a r]∼
Lσ [r]∼ = Lτ r = L r
wfσ [r]∼ = wfτ r = ⊺

[a∗ ⋅ b]∼ [(∅ ⋅ a∗) ⋅ b + ε]∼

[(ε ⋅ a∗) ⋅ b + ∅]∼

[((∅ ⋅ a∗ + ε ⋅ a∗) ⋅ b + ∅) + ∅]∼

[((∅ ⋅ a∗ + ∅ ⋅ a∗) ⋅ b + ε) + ∅]∼

[((∅ ⋅ a∗ + ∅ ⋅ a∗) ⋅ b + ∅) + ∅]∼

a

b

a
b

a, b

b

a, b

a

a, b

Figure 5.1: Derivative automaton modulo ACI for a∗ ⋅ b

Technically, the formalization defines a quotient type [64] of “regular expressions
modulo ACI” to represent equivalence classes and uses Lifting and Transfer [60]
to lift operations on regular expressions to operations on equivalence classes. The
above presentation of definitions of the locale parameters by “pattern matching”
on equivalence classes resembles the code generated by Isabelle for quotients (a
pseudo-constructor [53], [_]∼, wraps a concrete representative r), rather than the
actual definitions by Lifting.

Since the equivalence checker must compare equivalence classes, the code genera-
tion for quotients requires an executable equality (that is a decision procedure for
∼-equivalence). We achieve this through an ACI normalization function ⟨_⟩ that
maps a regular expression r to a canonical representative of [r]∼ by sorting all sum-
mands with respect to an arbitrary fixed linear order ⪯ while removing duplicates.
The definition of ⟨_⟩ employs a smart (simplifying) constructor ⊕, whose equations
are matched sequentially. Note that smart constructors adhere to the invariant that
they yield canonical representatives when applied to canonical representatives .

44 Chapter 5. Regular Expression Equivalence

primrec ⟨_⟩ ∶∶ αRE→ αRE where

⟨∅⟩ = ∅
⟨ε⟩ = ε
⟨A a⟩ = A a
⟨r + s⟩ = ⟨r⟩ ⊕ ⟨s⟩
⟨r ⋅ s⟩ = ⟨r⟩ ⋅ ⟨s⟩
⟨r∗⟩ = ⟨r⟩∗

fun ⊕ ∶∶ αRE→ αRE→ αRE where

(r + s) ⊕ t = r ⊕ (s ⊕ t)
r ⊕ (s + t) = if r = s then s + t

else if r ⪯ s then r + (s + t)
else s + (r ⊕ t)

r ⊕ s = if r = s then r
else if r ⪯ s then r + s else s + r

We obtain an executable decision procedure for ACI equivalence: r ∼ s ←→ ⟨r⟩ = ⟨s⟩.
This makes D∼.eqv executable, yielding verified code in different functional pro-
gramming languages via Isabelle’s code generator. Yet, the performance of the
generated code is disappointing. Figure 5.1 shows why; it shows the automaton
that results from visualizing our syntactic coalgebra given in D∼ applied to the ini-
tial state a∗ ⋅ b (arrows represent derivative computations via d and states with a
double margin are exactly those for which the empty word acceptance test o yields
⊺). We see that derivatives clutter concrete representatives with duplicated sum-
mands. Further derivative steps perform the same computation repeatedly and
hence become increasingly expensive. This bottleneck is avoided by taking canon-
ical ACI-normalized representatives as states yielding a second interpretation.

interpretation D ∶ fin_coalgD where

Σ = as_list UNIV
i r = ⟨r⟩
o r = o r
d a r = ⟨δ a r⟩
Lσ r = Lτ r = L r
wfσ r = wfτ r = ⊺

a∗ ⋅ b ε + (∅ ⋅ a∗) ⋅ b

∅ + (ε ⋅ a∗) ⋅ b

∅ + (∅ ⋅ a∗ + ε ⋅ a∗) ⋅ b

∅ + (ε + (∅ ⋅ a∗) ⋅ b)

∅ + (∅ ⋅ a∗) ⋅ b

a

b

a

b

a, b

b

a, b

a

a, b

Figure 5.2: ACI-normalized derivative automaton for a∗ ⋅ b

A few points are worth mentioning here: First, D does not use the quotient type—
it operates directly on canonical representatives and therefore can use structural
equality for comparison (rather than ∼). Second, the interpretations D∼ and D yield
structurally the same automata, although with different labels. Figure 5.2 shows
the automaton produced by D for a∗ ⋅ b. This observation—which enables us to
reuse the technically involved finiteness proof for D∼ to discharge the finiteness
assumption for D—relies crucially on our normalization function ⟨_⟩ being idem-
potent and well-behaved with respect to derivatives.

theorem ⟨⟨r⟩⟩ = ⟨r⟩
theorem ⟨δ a ⟨r⟩⟩ = ⟨δ a r⟩

5.1. Derivatives 45

The automaton from Figure 5.2 shows that the state labels still contain superflu-
ous information, notably in the form of ∅s and εs. A coarser relation than ∼-
equivalence, denoted ≈, addresses this concern. We omit the straightforward in-
ductive definition of ≈, which cancels ∅s and εs where possible and takes the asso-
ciativity of concatenation ⋅ into account. Coarseness ([r]∼ ⊆ [r]≈) together with the
finiteness assumption of D∼ implies finiteness of equivalence classes of derivatives
modulo ≈: finite {[fold δ w r]≈ ∣ w ∶∶ α list}.

As before, to avoid working with equivalence classes, we use a recursively defined
≈-normalization function ⟨⟨_⟩⟩ similar to ⟨_⟩ (it corresponds to the norm function
from the formalization by Krauss and Nipkow [76]). This intermediate normaliza-
tion might seem harmless, but it is not clear anymore that the number of derivatives
interspersed with normalization is finite1. We were not able to prove finiteness of
such derivatives interspersed with ⟨⟨−⟩⟩ (although we conjecture that it holds). Note
that, unlike ⟨_⟩, the normalization ⟨⟨_⟩⟩ (also ≈) is not well-behaved with respect to
derivatives: for example, ⟨⟨δ a ⟨⟨((a + ε) ⋅ (a ⋅ a)) ⋅ b⟩⟩⟩⟩ ≠ ⟨⟨δ a (((a + ε) ⋅ (a ⋅ a)) ⋅ b)⟩⟩.
The normalization would need to take the distributivity of ⋅ over + into account to
prevent this inequality, but even with this addition a formal proof of well-behaved-
ness seems difficult. Furthermore, our evaluation (Section 5.3) suggests that not too
much energy should be invested in finding this proof. Thus, the following inter-
pretation gives only a partial correctness result.

interpretation N ∶ fin_coalgD where

Σ = as_list UNIV
i r = ⟨⟨r⟩⟩
o r = o r
d a r = ⟨⟨δ a r⟩⟩
Lσ r = Lτ r = L r
wfσ r = wfτ r = ⊺

a∗ ⋅ b ε ∅
b a, b

a

a, b

Figure 5.3: Normalized derivative automaton for a∗ ⋅ b

In practice, we did not find an input for which N would not terminate. For the
example a∗ ⋅ b it even yields the minimal automaton shown in Figure 5.3.

5.1.2 Partial Derivatives

Partial derivatives split certain +-constructors into sets of regular expressions, thus
capturing ACI equivalence directly in the data structure. The automaton construc-
tion for a regular expression r starts with the singleton set {r}. More precisely,
partial derivatives ∂ are defined recursively as follows.

1For example, using the terminating normalization function that does the same ACI simplifications
as ⟨⟨−⟩⟩, but additionally soundly rewrites ε ⋅ a∗ to a∗ ⋅ a∗ for a fixed symbol a will result in an
infinite number of derivatives when applied at intermediate steps to the initial expression a∗.

46 Chapter 5. Regular Expression Equivalence

primrec ∂ ∶∶ α→ αRE→ αRE set where
∂ _ ∅ = {}
∂ _ ε = {}
∂ a (A b) = if a = b then {ε} else {}
∂ a (r + s) = ∂ a r ∪ ∂ a s
∂ a (r ⋅ s) = ∂ a r ⊙ s ∪ if o r then ∂ a s else {}
∂ a (r∗) = ∂ a r ⊙ r∗

Above, R ⊙ s is used as a shorthand notation for {r ⋅ s ∣ r ∈ R}. The definition yields
the characteristic property of partial derivatives by induction on r.

{w ∣ a # w ∈ L r} = ⋃s∈∂ a r L s

Following this characteristic property, we can interpret the locale fin_coalgD. The
automaton constructed by P for our running example is shown in Figure 5.4.

interpretation P ∶ fin_coalgD where

Σ = as_list UNIV
i r = {r}
o R = ∃r ∈ R. o r
d a R = ⋃r∈R δ a r
Lσ R = ⋃r∈R L r
Lτ r = L r
wfσ r = wfτ r = ⊺

{a∗ ⋅ b}

{(ε ⋅ a∗) ⋅ b}

{ε} {}
b a, b

a b

a

a, b

Figure 5.4: Partial derivative automaton for a∗ ⋅ b

The assumptions of coalgD (inherited by fin_coalgD) are easy to discharge. Just as
for Brzozowski derivatives, only the proof of finiteness of the reachable state space
poses a challenge. We were able to reuse the proof by Wu et al. [119] who show
finiteness when proving one direction of the Myhill-Nerode theorem. Compared
with the proof of finiteness for the interpretation D, the formal reasoning about
partial derivatives appears to be more succinct.

There is a direct connection between ∂ and δ that seems not to have been covered in
the literature. It is best expressed in terms of a recursive function pset that translates
derivatives to partial derivatives: pset (δ a r) = ∂ a r.

primrec pset ∶∶ αRE→ αRE set where
pset ∅ = {}
pset ε = {ε}
pset (A a) = {A a}
pset (r + s) = pset r ∪ pset s
pset (r ⋅ s) = pset r ⊙ s
pset (r∗) = {r∗}

5.2. Marked Regular Expressions 47

A finite set R of regular expressions can be represented uniquely by a single regular
expression ∑R, a sum ordered with respect to ⪯. Hence, we have ∑pset (δ a r) =
∑∂ a r, meaning that we can devise a normalization function ⟨⟨⟨r⟩⟩⟩ = ∑pset r that
allows us to simulate partial derivatives while operating on plain regular expres-
sions. Alternatively, ⟨⟨⟨_⟩⟩⟩ can be defined using smart constructors (with sequen-
tially matched equations):

primrec ⟨⟨⟨_⟩⟩⟩ ∶∶ αRE→ αRE where

⟨⟨⟨∅⟩⟩⟩ = ∅
⟨⟨⟨ε⟩⟩⟩ = ε
⟨⟨⟨A a⟩⟩⟩ = A a
⟨⟨⟨r + s⟩⟩⟩ = ⟨⟨⟨r⟩⟩⟩ ⊞ ⟨⟨⟨s⟩⟩⟩
⟨⟨⟨r ⋅ s⟩⟩⟩ = ⟨⟨⟨r⟩⟩⟩ ⊡ s
⟨⟨⟨r∗⟩⟩⟩ = r∗

primrec ⊡ ∶∶ αRE→ αRE→ αRE where

∅ ⊡ r = ∅
(r + s) ⊡ t = (r ⊡ s) ⊞ (s ⊡ t)
r ⊡ s = s ⋅ t

primrec ⊞ ∶∶ αRE→ αRE→ αRE where

∅ ⊞ r = r
r ⊞ ∅ = r
(r + s) ⊞ t = r ⊞ (s ⊞ t)
r ⊞ (s + t) = if r = s then s + t

else if r ⪯ s then r + (s + t)
else s + (r ⊞ t)

r ⊞ s = if r = s then r
else if r ⪯ s then r + s

else s + r

This definition allows to contrast the implicit quotienting performed by partial
derivatives with the qoutienting modulo ACI equivalence (∼). They turn out to
be incomparable: ⟨⟨⟨_⟩⟩⟩ does not simplify the second argument of concatenation ⋅
and the argument of iteration ∗, but erases ∅s and uses left distributivity.

Finally, we obtain a last derivative-based interpretation using the characteristic
property ⟨⟨⟨δ a r⟩⟩⟩ = ∑(∂ a r) and reusing the proof of P’s finiteness assumption.

interpretation PD ∶ fin_coalgD where

Σ = as_list UNIV
i r = r
o r = o r
d a r = ⟨⟨⟨δ a r⟩⟩⟩
Lσ r = Lτ r = L r
wfσ r = wfτ r = ⊺

Whenever P yields an automaton for r with states labeled with finite sets of regular
expressions Xi, the automaton constructed by PD for r is structurally the same and
has its states labeled with ∑Xi.

5.2 Marked Regular Expressions

One of the oldest methods for converting a regular expression into an automaton
is based on the idea of identifying the states of the automaton with positions in the

48 Chapter 5. Regular Expression Equivalence

regular expression. Both McNaughton and Yamada [82] and Glushkov [50] mark
the atoms in a regular expression with numbers to identify positions uniquely. In
this section, we formalize two recent reincarnations of this approach due to Fischer
et al. [43] and Asperti [5, 6]. They are based on the realization that in a functional
programming setting, it is most convenient to represent positions in a regular ex-
pression by marking some of its atoms. First we define an infrastructure for work-
ing with marked regular expressions. Then we define and relate both reincarna-
tions in terms of this infrastructure.

Marked regular expressions are formalized by the following type synonym (where
the value ⊺ denotes a marked atom).

type_synonym α mRE = (bool×α)RE

We convert easily between RE and mRE with the help of map_RE, the map function
on regular expressions. The language Lm of a marked regular expression is the set
of words that start at some marked atom.

definition πmRE ∶∶ α mRE→ αRE where

πmRE = map_RE snd
definition ιmRE ∶∶ αRE→ α mRE where

ιmRE = map_RE (λr. (�, r))

primrec Lm ∶∶ α mRE→ α lang where

Lm ∅ = {}
Lm ε = {}
Lm (A (m, a)) = if m then {[a]} else {}
Lm (r + s) = Lm r ∪ Lm s
Lm (r ⋅ s) = Lm r ⋅ L (πmRE s) ∪ Lm s
Lm (r∗) = Lm r ⋅ L (πmRE r)∗

The function final tests if some atom at the “end” of a regular expression is marked.

primrec final ∶∶ α mRE→ bool where
final ∅ = �
final ε = �
final (A (m, a)) = m
final (r + s) = final r ∨ final s
final (r ⋅ s) = final s ∨ o s ∧ final r
final (r∗) = final r

Marks are moved around a regular expression by two operations. The function
read a r unmarks all atoms in r except a.

5.2. Marked Regular Expressions 49

definition read ∶∶ α→ α mRE→ α mRE where

read a = map_RE (λ(m, x). (m ∧ a = x, x))

Its characteristic lemma is that it restricts Lm r to words whose head is a.

theorem Lm (read a r) = {w ∈ Lm r ∣ w ≠ [] ∧ hd w = a}

The function follow m r moves all marks in r to the “next” atom, much like an ε-
closure; the mark m is newly pushed in from the left.

primrec follow ∶∶ bool→ α mRE→ α mRE where

follow m ∅ = ∅
follow m ε = ε
follow m (A (_, a)) = A (m, a)
follow m (r + s) = follow m r + follow m s
follow m (r ⋅ s) = follow m r ⋅ follow (final r ∨ m ∧ o r) s
follow m (r∗) = (follow (final r ∨ m) r)∗

The characteristic lemma about follow shows that the marks are moved forward,
thereby chopping off the first letter (in the generated language), and that the pa-
rameter m indicates whether every “first” atom should be marked:

theorem Lm (follow m r) = {tl w ∣ w ∈ Lm r} ∪
(if m then L(πmRE r) else {})− {[]}

5.2.1 Mark After Atom

In the work of McNaughton-Yamada-Glushkov, the mark indicates which atom
has just been read—the mark is located “after” the atom. Therefore the initial state
is special because nothing has been read yet. Thus we express the states of the
automaton as a pair of a boolean (⊺ means that nothing has been read yet) and a
marked regular expression. The boolean can be viewed as a mark in front of the
automaton. (Alternatively, one could work with an explicit start symbol in front of
the regular expression.) We interpret the locale fin_coalgD as follows.

interpretation A ∶ fin_coalgD where

Σ = as_list UNIV
i r = (⊺, ιmRE r)
o (m, r) = final r ∨ m ∧ o r
d a (m, r) = (�, read a (follow m r))
Lσ (m, r) = Lm(follow m r) ∪ if o (m, r) then {[]} else {}
Lτ r = L r
wfσ (m, r) = wfτ r = ⊺

50 Chapter 5. Regular Expression Equivalence

The definition of A.d expresses that we first build the ε-closure starting from the
marked atoms (via follow) and then read the next atom. With the characteristic lem-
mas about read and follow (and a few auxiliary lemmas), the locale assumptions are
easily proved. This yields our first procedure based on marked regular expressions.
The finiteness assumption is easily proved via the following lemma.

theorem fold A.d w (A.i r) ∈ {⊺, �}×mrexps r

Above, mrexps ∶∶ αRE → (α mRE) set maps a regular expression to the finite set of
all its marked variants, that is mrexps r = {r′ ∣ πmRE r′ = r}; its actual recursive
definition is straightforward and omitted.

Now we take a closer look at the work of Fischer et al. [43], which inspired the pre-
ceding formalization. They present a number of (not formally verified) matching
algorithms on marked regular expressions in Haskell that follow McNaughton-
Yamada-Glushkov. Their basic transition function is called shift.

primrec shift ∶∶ bool→ α mRE→ α→ α mRE where

shift _ ∅ _ = ∅
shift _ ε _ = ε
shift m (A (_, a)) c = A (m ∧ (a = c), a)
shift m (r + s) c = shift m r c + shift m s c
shift m (r ⋅ s) c = shift m r c ⋅ shift (final r ∨ m ∧ o r) s c
shift m (r∗) c = (shift (final r ∨ m) r c)∗

A simple induction proves that their shift is our A.d.

theorem shift m r c = read c (follow m r)

Thus we have verified their shift function. Fischer et al. optimize shift further,
which is still quadratic due to the calls of the recursive functions final and o. They
simply cache the values of final and o at all nodes of a regular expression by adding
additional fields to each constructor. We have verified this optimization step as
well. Until the end of this subsection, α mRE therefore will be not just an extension
of the atoms of αRE as before, but an own datatype that includes the additional
fields.

datatype α mRE = ∅̂ ∣ ε̂ ∣ Âbool α

∣ α mRE +bool
bool α mRE ∣ α mRE ⋅bool

bool α mRE ∣ (α mRE)∗, bool

In the above definition the superscripted Booleans cache the values of final, while
the subscripted ones cache the values of o. We can now redefine those operations
to access the cached values directly instead of descending recursively.

5.2. Marked Regular Expressions 51

primrec final ∶∶ α mRE→ bool where
final ∅̂ = �
final ε̂ = �
final (Âm a) = m
final (r +m

b s) = m
final (r ⋅mb s) = m
final (r∗, m) = m

primrec o ∶∶ α mRE→ bool where
o ∅̂ = �
o ε̂ = ⊺
o (Âm a) = �
o (r +m

b s) = b
o (r ⋅mb s) = b
o (r∗, m) = ⊺

Moreover, we define smart constructors +̂, ⋅̂, and _∗̂ for +, ⋅, and _∗ that combine the
cached values in a meaningful way and use those to transform plain regular ex-
pressions meaningfully into caching expressions via the function ιmRE . The inverse
function πmRE strips the cached values to obtain a plain marked regular expression.

definition +̂ ∶∶ α mRE→ α mRE→ α mRE where

r +̂ s = r +final r∨final s
o r∨o s s

definition ⋅̂ ∶∶ α mRE→ α mRE→ α mRE where

r ⋅̂ s = r ⋅final r∧o s∨final s
o r∧o s s

definition _∗̂ ∶∶ α mRE→ α mRE where

r∗̂ = r∗, final r

primrec ιmRE ∶∶ αRE→ α mRE where

ιmRE ∅ = ∅̂
ιmRE ε = ε̂
ιmRE (A a) = Â� a
ιmRE (r + s) = ιmRE r +̂ ιmRE s
ιmRE (r ⋅ s) = ιmRE r ⋅̂ ιmRE s
ιmRE (r∗) = (ιmRE r)∗̂

primrec πmRE ∶∶ α mRE→ (bool×α)RE where

πmRE ∅̂ = ∅
πmRE ε̂ = ε
πmRE (Âm a) = A (m, a)
πmRE (r +m

b s) = πmRE r + πmRE s
πmRE (r ⋅mb s) = πmRE r ⋅ πmRE s
πmRE (r∗, m) = (πmRE r)∗

What meaningful means is specified by a wellformedness predicate wfmRE that
checks that the cached values are actually equal to the earlier recursive compu-
tation. All constructors that carry a hat ˆ produce wellformed expressions, when
applied to wellformed arguments. Note that the functions final and o on the right
hand sides of the following equations are the ones defined on plain marked regular
expressions (without any caching).

fun wfmRE ∶∶ α mRE→ bool where
wfmRE (r +m

b s) = wfmRE r ∧ wfmRE s ∧
let t = πmRE r + πmRE s in m = final t ∧ b = o t

wfmRE (r ⋅mb s) = wfmRE r ∧ wfmRE s ∧
let t = πmRE r ⋅ πmRE s in m = final t ∧ b = o t

wfmRE (r∗, m) = wfmRE r ∧ m = final (πmRE r)
wfmRE _ = ⊺

52 Chapter 5. Regular Expression Equivalence

Finally, the transition function shift is basically the same as in the case of plain
marked regular expressions, except for the usage of smart constructors and the
optimized final and o functions.

primrec shift ∶∶ bool→ α mRE→ α→ α mRE where

shift _ ∅̂ _ = ∅̂
shift _ ε̂ _ = ε̂
shift m (Â_ a) c = Âm∧(a=c) a
shift m (r +_

_ s) c = shift m r c +̂ shift m s c
shift m (r ⋅__ s) c = shift m r c ⋅̂ shift (final r ∨ m ∧ o r) s c
shift m (r∗, _) c = (shift (final r ∨ m) r c)∗̂

Overall, this yields another interpretation which is very similar to A (also proof-
wise), especially since we have overloaded the notation. It also constitutes our
first usage of the wellformedness check. However, all cached marked regular ex-
pressions that the equivalence checker will see, will be wellformed by construction
(since ιmRE produces wellformed equations and shift preserves wellformedness).
Therefore, the function wfmRE will never be executed in the generated code.

interpretation A2 ∶ fin_coalgD where

Σ = as_list UNIV
i r = (⊺, ιmRE r)
o (m, r) = final r ∨ m ∧ o r
d a (m, r) = (�, shift m r a)
Lσ (m, r) = A.Lσ (m, πmRE r)
Lτ r = L r
wfσ (m, r) = wfmRE r
wfτ r = ⊺

5.2.2 Mark Before Atom

Instead of imagining the mark to be after an atom, it can also be viewed to be in
front of it; in that case it marks possible next atoms. This is somewhat dual to the
McNaughton-Yamada-Glushkov construction. It leads to the following interpreta-
tion of our locale. (Note that we are again using the non-caching expressions.)

interpretation B ∶ fin_coalgD where

Σ = as_list UNIV
i r = (follow ⊺ (ιmRE r), o r)
o (r, m) = m
d a (r, m) = let r′ = read a r in (follow � r′, final r′)
Lσ (r, m) = Lm r ∪ if m then {[]} else {}
Lτ r = L r
wfσ (r, m) = wfτ r = ⊺

5.2. Marked Regular Expressions 53

The definition of B.d expresses that we first read an atom and then build the ε-
closure. The assumptions of coalgD and fin_coalgD are proved easily just like in the
previous interpretations with marked regular expressions.

The interesting point is that this happens to be the algorithm formalized by As-
perti [5]. Although he says that he has formalized McNaughton-Yamada, he ac-
tually formalized the dual algorithm. This is not easy to see because Asperti’s
formalization is considerably more involved than ours, with many auxiliary func-
tions. Strictly speaking, his algorithm is a variation of ours that produces the same
automata. The complete proof of this fact can be found elsewhere [57]. Because
of the size of Asperti’s formalization, we omit it here. However, we can take a
step towards his formulation and merge follow and read into one function move, the
analogue of his homonymous function.

primrec move ∶∶ α→ α mRE→ bool→ α mRE where

move _ ∅ _ = ∅
move _ ε _ = ε
move _ (A (_, a) m = A (m, a)
move c (r + s) m = move c r m + move c s m
move c (r ⋅ s) m = move c r m ⋅ move c s (c ∈ final1 r ∨ m ∧ o r)
move c (r∗) m = (move c r (c ∈ final1 r ∨ m))∗

Here, final1 is an auxiliary recursive function (not shown here) with the character-
istic property that c ∈ final1 r = final (read c r). A simple induction proves that move
combines follow and read as in B.d.

theorem move c r m = follow m (read c r)

The function move has quadratic complexity for the same reason as shift. Unfor-
tunately, it cannot be made linear with the same ease as for shift. The problem is
that we need to cache the value of c ∈ final1 r in the previous step, before we know
c. We solve this by caching the whole set final1 r of letters. In the worst case, the
whole alphabet must be stored in certain inner nodes. However, for an alphabet
of fixed size this guarantees linear time complexity. This optimization constitutes
a last interpretation B2 in the spirit of A2. We again start by extending the datatype
of regular expression with additional fields for caching.

datatype α mRE = ∅̂ ∣ ε̂ ∣ Âbool α

∣ α mRE +α set
bool α mRE ∣ α mRE ⋅α set

bool α mRE ∣ (α mRE)∗,α set

In the above definition the superscripted values cache sets of letters produced by
final1 (except for the Â constructor), while the subscripted ones cache the values of
o. As for A2, we redefine those operations to rely on the cached values.

54 Chapter 5. Regular Expression Equivalence

primrec final1 ∶∶ α mRE→ α→ bool where
final1 ∅̂ = {}
final1 ε̂ = {}
final1 (Âm a) = if m then {a} else {}
final1 (r +M

b s) = M
final1 (r ⋅Mb s) = M
final1 (r∗, M) = M

primrec o ∶∶ α mRE→ bool where
o ∅̂ = �
o ε̂ = ⊺
o (Âm a) = �
o (r +M

b s) = b
o (r ⋅Mb s) = b
o (r∗, M) = ⊺

The key difference to A2 lies in the following definitions of the smart constructors
+̂, ⋅̂, and _∗̂ for +, ⋅, and _∗ that combine the cached values. The casts ιmRE and
πmRE between the different kinds of regular expressions and the wellformedness
predicate wfmRE are then using the smart constructors abstraction and therefore
(almost) identical to the equivalent operations used in the A2 interpretation.

definition +̂ ∶∶ α mRE→ α mRE→ α mRE where

r +̂ s = r +final1 r∪final1 s
o r∨o s s

definition ⋅̂ ∶∶ α mRE→ α mRE→ α mRE where

r ⋅̂ s = r ⋅(if o s then final1 r else {})∪final1 s
o r∧o s s

definition _∗̂ ∶∶ α mRE→ α mRE where

r∗̂ = r∗, final1 r

primrec ιmRE ∶∶ αRE→ α mRE where

ιmRE ∅ = ∅̂
ιmRE ε = ε̂
ιmRE (A a) = Â� a
ιmRE (r + s) = ιmRE r +̂ ιmRE s
ιmRE (r ⋅ s) = ιmRE r ⋅̂ ιmRE s
ιmRE (r∗) = (ιmRE r)∗̂

primrec πmRE ∶∶ α mRE→ (bool×α)RE where

πmRE ∅̂ = ∅
πmRE ε̂ = ε
πmRE (Âm a) = A (m, a)
πmRE (r +M

b s) = πmRE r + πmRE s
πmRE (r ⋅Mb s) = πmRE r ⋅ πmRE s
πmRE (r∗, M) = (πmRE r)∗

fun wfmRE ∶∶ α mRE→ bool where
wfmRE (r +M

b s) = wfmRE r ∧ wfmRE s ∧
let t = πmRE r + πmRE s in M = final1 t ∧ b = o t

wfmRE (r ⋅Mb s) = wfmRE r ∧ wfmRE s ∧
let t = πmRE r ⋅ πmRE s in M = final1 t ∧ b = o t

wfmRE (r∗, M) = wfmRE r ∧ M = final1 (πmRE r)
wfmRE _ = ⊺

Finally, our simplified transition function move is basically the same as in the case
of plain marked regular expressions, except for its usage of smart constructors and
the optimized final1 and o functions.

primrec move ∶∶ α→ α mRE→ bool→ α mRE where

move _ ∅̂ _ = ∅̂

5.2. Marked Regular Expressions 55

move _ ε̂ _ = ε̂
move c (Â_ a) m = Âm a
move c (r +_

_ s) m = move c r m +̂ move c s m
move c (r ⋅__ s) m = move c r m ⋅̂ move c s (c ∈ final1 r ∨ m ∧ o r)
move c (r∗, _) m = (move c r (c ∈ final1 r ∨ m))∗̂

The same applies to the functions follow and final, which were not needed in the
A2 interpretation, but are required for the parameter i of the forthcoming B2. We
omit the straightforward equations for those functions. Those were all the ingre-
dients we need for the actual interpretation. The locale’s assumptions are (as it
is always the case with marked regular expressions) easy to discharge, especially
when reusing the proofs that were already carried out for the interpretation B.

interpretation B2 ∶ fin_coalgD where

Σ = as_list UNIV
i r = (follow ⊺ (ιmRE r), o r)
o (r, m) = m
d a (r, m) = (move a r �, a ∈ final1 r)
Lσ (r, m) = B.Lσ (πmRE r, m)
Lτ r = L r
wfσ (r, m) = wfmRE r
wfτ r = ⊺

Even for a fixed alphabet, the actual move function from Asperti’s formalization has
quadratic complexity when faced with a tower of stars: each recursive call of move
can trigger a call of a function eclose, which has linear complexity. Asperti aimed
for compact proofs, not maximal efficiency.

5.2.3 Comparison

The two constructions may look similar, but they do not produce isomorphic au-
tomata. Considering our running example, we display the mark by a “●” before
or after the atom. The two resulting automata are shown in Figure 5.5. There are
special states that cannot be denoted by marking atoms only: ●r in A’s automaton
is the completely unmarked regular expression that is the initial state and r● in B’s
automaton is a final state.

It turns out that the “before” automaton is a homomorphic image of the “after”
automaton. To verify this we specify the homomorphism ϕ (m, r) = (follow m r,
A.o (m, r)) and prove that it preserves initial states and commutes with the transi-
tion function.

56 Chapter 5. Regular Expression Equivalence

theorem ϕ (A.i r) = B.i r
theorem ϕ (A.d a s) = B.d a (ϕ s)
theorem ϕ (fold A.d w s) = fold B.d w (ϕ s)

A direct consequence is that Asperti’s “before” construction always generates au-
tomata with at most as many states as the McNaughton-Yamada-Glushkov con-
struction. Formally, in the context of locale coalgD we have defined an executable
computation of the reachable state space {fold d w (i r) ∣ w ∈ (set Σ)∗} of the au-
tomaton as follows (where the (Some x) = x) and proved the aforementioned cardi-
nality relation (where ∣_∣ is the cardinality of a set).

definition (in coalgD) reachable ∶∶ σ→ σ set where
reachable r = snd (the (while (λ(ws, _). ws = [])

(λ(s # ws, P). fold (λa (ws, P).
let s′ = d a s in if s′ ∈ P then (ws, P) else (s′ # ws, P ∪ {s′})))

Σ ([i r], {i r})))

theorem ∣B.reachable r∣ ≤ ∣A.reachable r∣

In early drafts of this paper, we only conjectured the above statement and unsuc-
cessfully tried to refute it with Isabelle’s Quickcheck facility [27]. Later, Helmut
Seidl has communicated an informal proof using the above homomorphism to us.

Let us abbreviate the statement of the above theorem to nb ≤ na. One may think
that na is only slightly larger than nb, but it seems that nb and na are more than
a constant summand apart: for a two-element alphabet Quickcheck could refute
na ≤ nb + k even for k = 100.

5.3 Empirical Comparison

We compare the efficiency with respect to both matching and deciding equiva-
lence of the Standard ML code generated from eight described interpretations: ∼-
normalized derivatives (D), ≈-normalized derivatives (N), partial derivatives (P),
derivatives simulating partial derivatives (PD), mark “after” atom (A), mark “af-
ter” atom with caching (A2), mark “before” atom (B), and mark “before” atom with
caching (B2). The interpretation using the quotient type for derivatives (D∼) is not

●(a∗ ⋅ b)

a∗ ⋅ (b●) a∗ ⋅ b

(a●)∗ ⋅ b

b

a, b

a

b

a

a, b

(●a)∗ ⋅ (●b)

(a∗ ⋅ b)● a∗ ⋅ b

b

a, b

a

a, b

Figure 5.5: Marked regular expression automata (A left, B right) for a∗ ⋅ b

5.3. Empirical Comparison 57

in this list, as it is clearly superseded by D. The results of the evaluation, performed
on an Intel Core i7-2760QM machine with 8 GB of RAM, are shown in Figure 5.6.
Solid lines depict the four derivative-based algorithms. Dashed lines are used for
the algorithms based on marked regular expressions.

The first two tests, MATCH-R and MATCH-L, measure the time required to match
the word an against the regular expression (a + ε)n ⋅ an—a standard benchmark
also used by Fischer et al. [43]. The difference between the two tests is the defi-
nition of rn. MATCH-R defines it as the n-fold concatenation associated to the right:
r4 = r ⋅ (r ⋅ (r ⋅ r)), whereas MATCH-L associates to the left: r4 = ((r ⋅ r) ⋅ r) ⋅ r. In
both tests, marked regular expressions outperform derivatives by far. The normal-
ization performed by the derivative-based approaches (required to obtain a finite
number of states for the equivalence check) decelerates the computation of the next
state. Marked regular expressions benefit from a fast next state computation. The
test MATCH-L exhibits the quadratic nature of the unoptimized matchers A and B
(their curves are almost identical and therefore hard to distinguish in Figure 5.6).
In contrast, A2 and B2 perform equally well in both tests, A2 being approximately
1.5 times faster due to lighter cache annotations.

The next test goes back to Antimirov [2]: We measure the time (with a timeout of
ten seconds) for proving the equivalence of a∗ and (a0 + . . . + an−1) ⋅ (an)∗. Again
two tests, EQ-R and EQ-L, distinguish the associativity of concatenation in rn. Here,
the derivative-based equivalence checkers (except for D) perform better then the
ones based on marked regular expressions. In particular, both version of partial
derivatives, P and PD, outperform N—since this example was crafted by Antimirov
to demonstrate the strength of partial derivatives, this is not wholly unexpected.
Comparing EQ-R and EQ-L, the associativity barely influences the runtime.

Finally, to avoid bias towards a particular algorithm, we have devised the ran-
domized test EQ-RND. There we measure the average time (with a timeout of ten
seconds) to prove the equivalence of r with itself for 100 randomly generated ex-
pressions with n inner nodes (+, ⋅, or ∗). Proving r ≡ r is of course a trivial task,
but our algorithms do not stop the exploration when the bisimulation is extended
with a new pair of two equal states. This optimization, which is a must for any
practical algorithm, is the first step towards the rewarding usage of bisimulation
up to equivalence (or even up to congruence) [21]. Without any such optimization,
the task of proving r ≡ r amounts to enumerating all derivatives of r, which is ex-
actly what we want to compare. To generate random regular expression we use the
infrastructure of SpecCheck [101]—a Quickcheck clone for Isabelle/ML. For com-
puting the average, a timeout counts as 10 second (although the actual computation
would likely have taken longer)—an approximation that skews the curves to con-
verge to the margin of 10 seconds. We stopped measuring a method for increasing
n when the average approached 5 seconds.

The results of EQ-RND are summarized as follows: D ≫ N ≫ P, PD ≫ A, A2, B, B2,
where X ≫ Y means that Y is an order of magnitude faster than X. The algorithm P

58 Chapter 5. Regular Expression Equivalence

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

n

Ti
m

e
(s

)

(MATCH-R)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

n

Ti
m

e
(s

)

(MATCH-L)

0 100 200 300 400 500 600 700
0
2
4
6
8

n

Ti
m

e
(s

)

(EQ-R)

0 100 200 300 400 500 600 700
0
2
4
6
8

n

Ti
m

e
(s

)

(EQ-L)

0 100 200 300 400 500 600 700 800 900
0

2

4

n

Ti
m

e
(s

)

(EQ-RND)

D N P PD B B2 A A2

Figure 5.6: Evaluation results

5.4. Extensions 59

is noticeably slower than PD—avoiding sets reduces the overhead. Among A, A2, B,
B2, Asperti’s unoptimized algorithm B performs best by a narrow margin. Regular
expressions where the caching overhead pays off are rare and therefore not visible
in the randomized test results. The same holds for expressions where B produces
much smaller automata than A (such as the counterexample to na ≤ nb + 100 from
Subsection 5.2.3).

Our evaluation shows that A2 is the best choice for matching. For equivalence
checking, the winner is not as clear cut: B (especially when applied to normalized
input to avoid quadratic runtime without caching) and PD seem to be the best
choices.

5.4 Extensions

Brzozowski’s derivatives are easily extendable to regular expressions intersection
and negation—indeed Brzozowski performed this extension already in his original
work [25]. The number of such extended derivatives is still finite when quotiented
modulo ACI.

In the next chapter we consider regular expressions further extended with projec-
tion. This extension caters for a simple semantics-preserving translation of formu-
las of different monadic second-order logics on finite words into regular expres-
sions (Chapter 7).

Extending partial derivatives with intersection and negation is more involved [29].
An additional layer of sets must be used for intersections. With other words the
states of our automaton would then be sets of sets of regular expressions. In Sec-
tion 5.3, we have seen that already one layer of sets incurs some overhead. Hence,
the view on partial derivatives as derivatives followed by some normalization is
expected to be even more profitable for the extension—indeed in the next chapter
we will take this route. In contrast, extending partial derivatives with projection is
an easy exercise.

It is unclear how to extend marked regular expressions to handle negation and in-
tersection. The number of possible markings for a regular expression of alphabetic
width n is 2n. However, there exist regular expressions of alphabetic width n using
intersection, whose minimal automata have 22n

states [47].

Giving one such strange expressions–
Sullen, stupid, pert expressions.

— Lewis Carroll, Hiawatha’s Photographing
(1869)

Chapter 6

Π-Extended Regular Expressions

So far we have considered plain regular expressions and different decision proce-
dures for their equivalence. In this chapter, we alter the input structures: we con-
sider extended regular expressions (with intersection and complement) and further
extend them by an additional operation: projection Π.

In Chapter 7 MSO formulas will be translated into regular expressions such that
encodings of models of a formula correspond exactly to words in the regular lan-
guage. Thereby, equivalence of formulas is reduced to the equivalence of regular
expressions. Regular expressions extended with intersection and complement will
allow us to encode Boolean operators on formulas in a straightforward fashion.
The projection Π will play the crucial role of encoding existential quantifiers.

This chapter therefore constitutes an important interlude on our journey from reg-
ular expressions to logical formulas. The extension of regular expressions with
projection is situated somewhere in between. The chapter is largely based on our
ICFP 2013 publication [113] and its extended version [115].

6.1 Syntax and Semantics

Π-extended regular expressions (to distinguish them from mere extended regular
expressions) are defined by extending the recursive data type αRE as follows.

datatype αRE = ∅ ∣ ε ∣ A α ∣ αRE + αRE ∣ αRE ⋅ αRE ∣ (αRE)∗

∣ αRE ∩ αRE ∣ ¬ (αRE) ∣ Π (αRE)

Note that much of the time we will omit the “Π-extended” and simply speak of
regular expressions if there is no danger of confusion.

We assume that type α is partitioned into a family of alphabets Σn that depend on
a natural number n and there is a function π ∶∶ Σn+1 → Σn that translates between

61

62 Chapter 6. Π-Extended Regular Expressions

the different alphabets.1. In our later application of translating MSO formulas into
regular expressions, n will represent the number of free variables of the translated
formula. For now Σn and π are just parameters of our setup.

We focus on wellformed regular expressions where all atoms come from the same
alphabet Σn. This will guarantee that the language of such a wellformed expres-
sion is a subset of Σ∗

n . The projection operation complicates wellformedness a lit-
tle. Because projection is meant to encode existential quantifiers, projection should
transform a regular expression over Σn+1 into a regular expression over Σn, just as
the existential quantifier transforms a formula with n + 1 free variables into a for-
mula with n free variables. Thus projection changes the alphabet. Wellformedness
is defined recursively. We call a regular expression r n-wellformed if wf n r holds.

primrec wf ∶∶ nat→ αRE→ bool where
wf n ∅ = ⊺
wf n ε = ⊺
wf n (A a) = a ∈ Σn

wf n (r + s) = wf n r ∧ wf n s
wf n (r ⋅ s) = wf n r ∧ wf n s
wf n (r∗) = wf n r
wf n (r ∩ s) = wf n r ∧ wf n s
wf n (¬ r) = wf n r
wf n (Π r) = wf (n+ 1) r

Note that in a system with dependent types, the parameter n could be a dependent
parameter of the recursive data type, whereas the convention in the simply typed
Isabelle/HOL is to use the predicate as a precondition if necessary.

The language L of a regular expression is defined as usual, except for the equations
for complement and projection. For an n-wellformed regular expression the defini-
tion yields a subset of Σ∗

n .

primrec L ∶∶ nat→ αRE→ α list set where
L n ∅ = {}
L n ε = {[]}
L n (A a) = {a}
L n (r + s) = L n r ∪ L n s
L n (r ⋅ s) = L n r ⋅ L n s
L n (r∗) = (L n r)∗
L n (r ∩ s) = L n r ∩ L n s
L n (¬ r) = Σ∗

n ∖ L n r
L n (Π r) = map π ● L (n+ 1) r

1Due to Isabelle’s lack of dependent types the type of π is α → α. The more refined type Σn+1 → Σn
is realized via a locale that relates its parameters π and Σ with the assumption π ● Σn+1 ⊆ Σn

6.2. Decision Procedure 63

The first unusual point is the parametrization with n. It expresses that we expect a
regular expression over Σn and is necessary for the definition L n (¬ r) = Σ∗

n ∖ L n r.

The definition L n (Π r) = map π ● L (n+ 1) r is parameterized by the fixed param-
eter π ∶∶ Σn+1 → Σn. The projection Π denotes the homomorphic image under π. In
more detail: map lifts π homomorphically to words (lists), and ● lifts it to sets of
words. Therefore Π transforms a language over Σn+1 into a language over Σn.

To understand the “projection” terminology, it is helpful to think of elements of Σn

as lists of fixed length n over some alphabet Σ and of π as the tail function on lists
that drops the first element of the list. A word over Σn is then a list of lists. We will
use this instantiation for π and Σ in Chapter 7.

6.2 Decision Procedure

Now we turn our attention to deciding equivalence of Π-extended regular expres-
sions. Therefore we extend the empty word acceptance test and Brzozowski deriva-
tives to the newly added cases.

primrec o ∶∶ αRE→ bool where
o ∅ = �
o ε = ⊺
o (A a) = �
o (r + s) = o r ∨ o s
o (r ⋅ s) = o r ∧ o s
o (r∗) = ⊺
o (r ∩ s) = o r ∧ o s
o (¬ r) = ¬o r
o (Π r) = o r

primrec δ ∶∶ α→ αRE→ αRE where

δ a ∅ = ∅
δ a ε = ∅
δ a (A b) = if a = b then ε else ∅
δ a (r + s) = δ a r + δ a s
δ a (r ⋅ s) = δ a r ⋅ s + if o r then δ a s else ∅
δ a (r∗) = δ a r ⋅ r∗

δ a (r ∩ s) = δ a r ∩ δ a s
δ a (¬ r) = ¬ δ a r
δ a (Π r) = Π (⊕b∈π−a δ b r)

The projection case introduced some new syntax that deserves some explanation.
The preimage π− applied to a letter a ∈ Σn denotes the set {b ∈ Σn+1 ∣ π b = a}.
Our alphabets Σn are finite for each n, hence so is the preimage of a letter. The
summation⊕ over a finite set denotes the iterated application of the +-constructor
of regular expressions. Summation over the empty set is defined as ∅.

Since the projection acts homomorphically on words, it is clear that the derivative
of Π r with respect to a letter a can be expressed as a projection of derivatives of r.
The concrete definition is a consequence of the following identity of left quotients
for a ∈ Σn and A ⊆ Σ∗

n+1:

{w ∣ a # w ∈ map π ● A} = map π ● ⋃
b∈π−a

{w ∣ b # w ∈ A}

The characteristic properties of o and δ follow by structural induction.

64 Chapter 6. Π-Extended Regular Expressions

theorem o r ←→ [] ∈ L n r
theorem wf n r Ð→ wf n (δ a r)
theorem wf n r Ð→ L n (δ a r) = {w ∣ a # w ∈ L n r}

As before, the number of distinct word derivatives modulo ACI of + is finite.

theorem finite {⟨fold δ w r⟩ ∣ w ∶∶ α list}

The function ⟨_⟩ ∶∶ αRE→ αRE extends the ACI normalization function from Chap-
ter 5 for the cases of intersection, complement, and projection as shown below. The
other cases remain unchanged (including the smart constructor ⊕ for union).

⟨r ∩ s⟩ = ⟨r⟩ ∩ ⟨s⟩
⟨¬ r⟩ = ¬ ⟨r⟩
⟨Π r⟩ = Π ⟨r⟩

The above finiteness theorem is among the most difficult ones to prove formally in
the present work. Let us try to understand why.

Brzozowski showed that the number of ∼-equivalence classes for a fixed regular
expression r is finite by structural induction on r. The inductive steps require prov-
ing finiteness by representing equivalence classes of derivatives of the expression
in terms of equivalence classes of derivatives of subexpressions. This is technically
complicated, especially for concatenation, iteration and projection, since it requires
a careful choice of representatives of equivalence classes to reason about them, and
Isabelle’s automation can not help much with the finiteness arguments.

When carrying out this induction, on a high-level most cases follow Brzozowski’s
original proof [25]. The only exception is the newly introduced constructor Π r,
where we proceed as follows: By induction hypothesis we know that r has a finite
set D of distinct derivatives modulo ACI. Some of the formulas in D can have a sum
as the topmost constructor. If we repeatedly split such outermost sums in D until
none are left, we obtain a finite set X of expressions. Each word derivative fold δ w r
is ACI equivalent to some Π (⊕Y) for some Y ⊆ X. Since X is finite, its powerset is
also finite. Hence, there are only finitely many distinct fold δ w r modulo ACI.

The above proof sketch is very informal. The corresponding formal proof is techni-
cally more challenging: we need to define precisely in which way fold δ w r is ACI
equivalent to Π (⊕Y) for arbitrary words w. Here we employ the ACI normaliza-
tion function and its equivalent abstract characterization: After the application of
⟨_⟩ all sums in the expression are associated to the right and the summands are
sorted with respect to ⪯ and duplicated summands are removed. Again, it is useful
to note that ⟨_⟩ is idempotent and well-behaved with respect to derivatives.

Finally, we obtain a decision procedure for the equivalence of Π-extended regular
expressions by instantiating our locale.

6.3. Atoms with More Structure 65

interpretation DΠ ∶ fin_coalgD where

Σ = Σn

i r = ⟨r⟩
o r = o r
d a r = ⟨δ a r⟩
Lσ r = Lτ r = L n r
wfσ r = wfτ r = wf n r

Note that the free variable n occurring in the interpretation becomes an additional
parameter of the procedure DΠ.eqv. Also π and Σ are not yet instantiated.

6.3 Atoms with More Structure

Owens et al. [92] advocate a more compact regular expression structure where the
language of an atom denotes a set of one letter words. The gained compactness
is beneficial especially for expressions over a large alphabet. In our setting, this
would mean using the type (α set)RE instead of αRE (without changing the un-
derlying alphabet type α). We will see later that our alphabet is indeed large—
exponential in the number of free variables.

We generalize this idea without committing to a fixed type for the atoms yet. In-
stead of αRE, the regular expressions over the alphabet type α on which the al-
gorithm operates will be of type βRE, where the relationship between α and the
new atoms β is given by a function memA ∶∶ β → α → bool. The new semantics
L ∶∶ nat → βRE → (α list) set of such regular expressions is defined just as the old L
except for the atom case. A similar adjustment is required for the new derivative
δ ∶∶ α→ βRE→ βRE.

L n (A b) = {a ∣ memA b a} δ a (A b) = if memA b a then ε else ∅

Furthermore, the function wfA ∶∶ nat → β→ bool is used to detect whether a β-atom is
wellformed. The wellformedness check for regular expressions wf ∶∶ nat → βRE →
bool will use wfA in the atom case: wf n b = wfA n b. The functions memA and wfA

are two further parameters of our procedure. We obtain the original procedure by
instantiating βwith α and defining memA (b ∶∶ α) a↔ (a = b) and wfA n b↔ (b ∈ Σn).
For the data structure from Owens et al. [92], one would instantiate β with α set and
define memA (B ∶∶ α set) a↔ (a ∈ B) and wfA n B↔ (∀a ∈ B. a ∈ Σn).

We will benefit from the abstract formulation by instantiating β with a set represen-
tation tailored to the particularities of the used regular expressions. In our case, the
regular expressions will be translated MSO formulas and a few very particular sets
of letters arise from the translation. Therefore, in Section 7 we will define a data
type atom matching exactly those particularities and instantiate β, memA, and wfA

accordingly.

66 Chapter 6. Π-Extended Regular Expressions

6.4 Alternatives to Brzozowski Derivatives

We have seen earlier the choice of the normalization is crucial for the size of the
bisimulation relation. In the previous chapter we have showed that partial deriva-
tives of ordinary regular expressions can be represented by a composition ⟨⟨⟨_⟩⟩⟩ ○ δ a
where ⟨⟨⟨_⟩⟩⟩ is a particular normalization function defined using smart constructors
and observe that ⟨⟨⟨_⟩⟩⟩ tends to maintain a better balance between the size of the
resulting bisimulation and the ease to compute the normal form than other ad hoc
choices. To use partial derivatives here, we extend this particular function ⟨⟨⟨_⟩⟩⟩ to
Π-extended regular expressions as follows. The equations for the smart construc-
tors ⊞, ⊡, ⊠, ⊟, and

Π

are matched sequentially.

primrec ⟨⟨⟨_⟩⟩⟩ ∶∶ αRE→ αRE where

⟨⟨⟨∅⟩⟩⟩ = ∅
⟨⟨⟨ε⟩⟩⟩ = ε
⟨⟨⟨a⟩⟩⟩ = a
⟨⟨⟨r + s⟩⟩⟩ = ⟨⟨⟨r⟩⟩⟩ ⊞ ⟨⟨⟨s⟩⟩⟩
⟨⟨⟨r ⋅ s⟩⟩⟩ = ⟨⟨⟨r⟩⟩⟩ ⊡ s
⟨⟨⟨r∗⟩⟩⟩ = r∗

⟨⟨⟨r ∩ s⟩⟩⟩ = ⟨⟨⟨r⟩⟩⟩ ⊠ ⟨⟨⟨s⟩⟩⟩
⟨⟨⟨¬ r⟩⟩⟩ = ⊟ ⟨⟨⟨r⟩⟩⟩
⟨⟨⟨Π r⟩⟩⟩ =

Π
⟨⟨⟨r⟩⟩⟩

primrec ⊡ ∶∶ αRE→ αRE→ αRE where

∅ ⊡ r = ∅
ε ⊡ r = r
(r + s) ⊡ t = (r ⊡ s) ⊞ (s ⊡ t)
r ⊡ s = s ⋅ t

primrec ⊟ ∶∶ αRE→ αRE where

⊟ (r + s) = (⊟ r) ⊠ (⊟ s)
⊟ (r ∩ s) = (⊟ r) ⊞ (⊟ s)
⊟ (¬ r) = r
⊟ r = ¬ r

primrec

Π

∶∶ αRE→ αRE whereΠ

∅ = ∅Π

ε = εΠ

(r + s) = (

Π

r) ⊞ (

Π

s)Π

r = Π r

primrec ⊞ ∶∶ αRE→ αRE→ αRE where

∅ ⊞ r = r
r ⊞ ∅ = r
(r + s) ⊞ t = r ⊞ (s ⊞ t)
r ⊞ (s + t) = if r = s then s + t

else if r ⪯ s then r + (s + t)
else s + (r ⊞ t)

r ⊞ s = if r = s then r
else if r ⪯ s then r + s

else s + r

primrec ⊠ ∶∶ αRE→ αRE→ αRE where

∅ ⊠ r = ∅
r ⊠ ∅ = ∅
(¬ ∅) ⊠ r = r
r ⊠ (¬ ∅) = r
(r + s) ⊠ t = (r ⊠ t) ⊞ (s ⊠ t)
r ⊠ (s + t) = (r ⊠ s) ⊞ (r ⊠ t)
(r ∩ s) ⊠ t = r ⊠ (s ⊠ t)
r ⊠ (s ∩ t) = if r = s then s ∩ t

else if r ⪯ s then r ∩ (s ∩ t)
else s ∩ (r ⊠ t)

r ⊠ s = if r = s then r
else if r ⪯ s then r ∩ s

else s ∩ r

It is worth noticing that ⟨⟨⟨_⟩⟩⟩ does not descend recursively into right hand side of
concatenation and into iteration. Also, ⊠ distributes over ⊞ , which establishes
something like a disjunctive normal form with respect to intersection (conjunc-
tion) and union (disjunction). Our motivation for this design goes back to Caron
et al. [29], who show how to extend partial derivatives to negation and intersection

6.4. Alternatives to Brzozowski Derivatives 67

using sets of sets of regular expressions. The outer level of sets there represents
unions, the inner intersections. We conjecture that the usage of our ⟨⟨⟨_⟩⟩⟩ as the
normalization function produces isomorphic bisimulations to those obtained by
working with the extended partial derivatives by Caron et al. [29] directly, but do
not attempt to prove it. This conjecture is irrelevant for our purpose, since there is
anyway only empirical evidence that partial derivatives perform better than other
normalizations for Π-extended regular expression, yet it is an interesting problem
to work on in the future. To employ ⟨⟨⟨_⟩⟩⟩ in the algorithm, it is sufficient to prove
that it preserves wellformedness and languages—an easy exercise in induction.

theorem wf n r Ð→ wf n ⟨⟨⟨r⟩⟩⟩
theorem wf n r Ð→ L n ⟨⟨⟨r⟩⟩⟩ = L n r

Using ⟨⟨⟨_⟩⟩⟩ we obtain a second interpretation for Π-extended regular expressions.

interpretation PΠ ∶ coalgD where

Σ = Σn

i r = ⟨⟨⟨r⟩⟩⟩
o r = o r
d a r = ⟨⟨⟨δ a r⟩⟩⟩
Lσ r = Lτ r = L n r
wfσ r = wfτ r = wf n r

Here, we did not succeed in proving finiteness. Indeed, during our attempts in do-
ing so we have discovered a mistake in an informal argument [28] that appeared to
prove it. There, a basic claimed de Morgan property of clausal forms—that is sets
of sets of expressions for modeling partial derivatives of extended regular expres-
sions [29]—does not hold. Translated to our setting, the source of the problem is
that our smart constructor ⊠ is not idempotent. To see this, assuming a ⪯ b ⪯ a ∩ b,
we calculate.

(a + b) ⊠ (a + b) = (a ⊠ (a + b)) ⊞ (b ⊠ (a + b))
= ((a ⊠ a) ⊞ (a ⊠ b)) ⊞ ((b ⊠ a) ⊞ (b ⊠ b))
= a ⊞ (a ∩ b) ⊞ (a ∩ b) ⊞ b
= a + b + (a ∩ b)

Consequently, the de Morgan law ⟨⟨⟨¬ (r + s)⟩⟩⟩ = ⟨⟨⟨¬ r ∩ ¬ s⟩⟩⟩ does not hold. One
could argue that this is a bad design of the normalization, which is modeled after
the operations on sets of sets of expressions given elsewhere [29]. (Those operations
suffer from the same limitations.) However, the performance of PΠ.eqv in practice
seems reasonable and changing the normalization function to make ⊠ idempotent
(for example by giving up distributivity of ∩ over +) resulted in a perceivable de-
crease in performance.

68 Chapter 6. Π-Extended Regular Expressions

Nevertheless, an interesting question is whether one can find a fast normaliza-
tion function that induces the following inductively defined equivalence relation
≈. Note that, unlike ∼ (ACI), the relation ≈ is only an equivalence, not a congru-
ence. Not being able to do so we leave this question as future work.

∅ + r ≈ r r + ∅ ≈ r ∅ ⋅ r ≈ ∅ ε ⋅ r ≈ r

(¬ ∅) ∩ r ≈ r r ∩ (¬ ∅) ≈ r ∅ ∩ r ≈ ∅ r ∩ ∅ ≈ ∅
r + (s + t) ≈ (r + s) + t r + s ≈ s + r r + r ≈ r

r ∩ (s ∩ t) ≈ (r ∩ s) ∩ t r ∩ s ≈ s ∩ r r ∩ r ≈ r

r ∩ (s + t) ≈ (r ∩ s) + (r ∩ t) (r + s) ∩ t ≈ (r ∩ t) + (s ∩ t)
(r + s) ⋅ t ≈ (r ⋅ t) + (s ⋅ t) ¬ (¬ r) ≈ r

¬ (r + s) ≈ (¬ r) ∩ (¬ s) ¬ (r ∩ s) ≈ (¬ r) + (¬ s)
Π (r + s) ≈ Π r + Π s Π ∅ ≈ ∅ Π ε ≈ ε

r ≈ r r ≈ s
s ≈ r

r ≈ s s ≈ t
r ≈ t

r1 ≈ s1 r2 ≈ s2
r1 + r2 ≈ s1 + s2

r1 ≈ s1 r2 ≈ s2
r1 ∩ r2 ≈ s1 ∩ s2

r1 ≈ s1
r1 ⋅ t ≈ s1 ⋅ t

r ≈ s
¬ r ≈ ¬ s

r ≈ s
Π r ≈ Π s

Another promising alternative to Brzozowski derivatives is the data type αREop

of dual regular expressions [91]. The data type is obtained by modifying αRE as
following: drop the negation and intersection constructors and add to every re-
maining n-ary constructor a Boolean flag b with the following semantics Lop ∶∶
nat→ αREop → bool.

Lop
n (b r1 ⋯rn) = Ln(if b then r1 ⋯rn else ¬ ((¬ r1) ⋯(¬ rn)))

In the formalization [114] we define wellformedness, derivatives and some ad hoc
normalization on αREop and instantiate our framework to work on those expres-
sions (again without proving finiteness). A later evaluation will show that the de-
cision procedure we obtain by using dual regular expression performs better in
certain cases—a phenomenon for which we do not have an explanation yet.

Exponential is the new polynomial.

— Moshe Y. Vardi (2012)

Chapter 7

WMSO Equivalence via
Regular Expression Equivalence

Formulas of weak monadic second-order logic (WMSO) constitute a very concise
language for expressing regular properties. Conciseness does not come for free:
although equivalence of WMSO formulas is decidable [26, 39, 107], the problem’s
complexity is non-elementary [83]. This fact made Vardi reconsider the meaning
of being tractable, as the above quote shows. Nevertheless, the MONA tool [58]
teaches us that the fear of the exponential tower is often unnecessary in practice.

Two different semantics for WMSO can be encountered in the literature: WS1S and
M2L(Str). Weak monadic second-order logic of one successor (WS1S) is a logic that
supports first-order quantification over natural numbers and second-order quan-
tification over finite (therefore “Weak”) sets of natural numbers, and beyond this
has few additional special predicates, such as < to compare first-order variables.
This is the number theoretic approach to WMSO. It is contrasted by the automaton
theoretic approach: M2L(Str), the monadic second-order logic on finite strings—
we will drop the (Str) from now on. Although the syntax is the same as in WS1S,
M2L formulas are considered in the context of a formal word, with variables rep-
resenting positions in the word. First-order variables denote single positions and
second-order variables denote finite sets of positions. The key difference to WS1S
is that the fixed length of the formal word bounds the values (positions) that may
be assigned to variables. While WS1S seems to be the more natural semantics, M2L
has its occasional uses due to a better complexity for certain problems like bounded
model construction [7]. Equivalence, however, is also non-elementary for M2L. An
in-depth discussion of benefits and drawbacks of the two semantics can be found
elsewhere [7, 67].

In this chapter, we introduce WMSO formulas and equip them with the two dif-
ferent semantics (Section 7.1). Then we define translations of formulas into Π-
extended regular expressions that preserve the different semantics (Section 7.2)
and use those to obtain decision procedures for WMSO based on the ones for Π-

69

70 Chapter 7. WMSO Equivalence via Regular Expression Equivalence

extended regular expressions introduced in the previous chapter (Section 7.3). In a
small case study we observe the obtained procedures in action (Section 7.4).

This chapter is based upon the same publications as the previous one [113, 115].

7.1 Syntax and Two Semantics

We briefly introduce WS1S and M2L (in that order), as well as a standard encoding
of interpretations as formal words. More thorough introductions are given else-
where [69, 106]. Formulas are defined inductively as follows.

datatype Φ = var < var ∣ var ∈ var ∣ Φ ∨Φ ∣ ¬ Φ ∣ ∃1 Φ ∣ ∃2 Φ

There are two kinds of quantifiers: ∃1 quantifies over first-order variables, which
denote natural numbers; ∃2 quantifies over second-order variables, which denote
finite sets of natural numbers. We use de Bruijn indices for variable bindings—
therefore, no names are attached to quantifiers. An occurrence of a bound variable
is just an index of type var = nat, that refers to its binder by counting the number
of quantifiers between the occurrence and the binder. For example, the formula
∃1 FO 0∨ (∃2 1 ∈ 0) would be customarily written as ∃x. FO x∨ (∃X. x ∈ X) indicat-
ing second-order variables by capital letters. The first 0 and the 1 refer to the outer
first-order quantifier, while the second 0 refers to the inner second-order quanti-
fier. Loose de Bruijn indices, that are lacking a binder, are considered to be free. For
example, 0 < 1 corresponds to the formula x < y for free x and y.

De Bruijn indices must be manipulated with great care and are hard to read. How-
ever, we prefer their usage for three reasons: First, they enable equality of formulas
to hold modulo renaming of variables without further ado. Second, for any for-
mula, its free variables are naturally ordered by the de Bruijn index. On several
occasions, we will benefit from this order by using a simple list, the n-th element of
which is associated to the variable with the index n. A priori this does not seem to
be an advantage over using a functional assignment. However one of the occasions
will be the underlying alphabet for the formula’s language—an alphabet consisting
of arbitrary functions is not a good idea for a decision procedure.1 Third, de Bruijn
indices were successfully employed in the formalization. Later we will also sketch
how to translate conventional formulas with explicit bindings into our datatype.

The usual abbreviations define conjunction ϕ∧ψ = ¬ (¬ ϕ∨¬ ψ), universal quan-
tification ∀i ϕ = ¬ ∃i (¬ ϕ) for i ∈ {1, 2}, falsity F = ∃1 x < x, and truth T = ¬ F.

The truth of a formula depends on an interpretation of its free variables. An interpre-
tation assigns each free variable of a formula a value. In our case, an interpretation

1And even if we restrict our attention to Boolean functions over a finite domain, we would like to
use some more efficient data structure (lists or BDDs), that would impose an order on variables
anyway, as the representation.

7.1. Syntax and Two Semantics 71

is represented by a list of finite sets of natural numbers; we abbreviate its type by
interp = nat fset list where α fset denotes the finite powerset type, just as α set is the
ordinary powerset type. The n-th entry of an interpretation is the assignment to the
free variable of the formula denoted by the loose index n. Therefore, a first-order
variable x is at first also assigned a finite set I[x], with the condition that it must be
a singleton set (predicate sing). The value assigned by the interpretation to x is then
taken to be the sole element of I[x] written, it (I[x]).

We can now define the WS1S-semantics of a formula ϕ with respect to an interpre-
tation I, written I ⊧ ϕ. We assume that I has the right length such that all accesses to
it are not out of bounds. This assumption will be formalized later in the language
notion for WS1S.

primrec ⊧ interp→ Φ → bool where
I ⊧ (x < y) = sing (I[x]) ∧ sing (I[y]) ∧ it (I[x]) < it (I[y])
I ⊧ (x ∈ X) = sing (I[x]) ∧ it (I[x]) ∈ I[X]
I ⊧ (ϕ∨ψ) = I ⊧ ϕ ∨ I ⊧ ψ
I ⊧ (¬ ϕ) = ¬(I ⊧ ϕ)
I ⊧ (∃1 ϕ) = ∃p. ({p} # I) ⊧ ϕ
I ⊧ (∃2 ϕ) = ∃P. ∣P∣ <∞ ∧ (P # I) ⊧ ϕ

Intuitively, x < y compares assignments of first-order variables, x ∈ X checks that
the assignment to x is contained in the assignment to X. Boolean connectives and
quantifiers behave as expected. De Bruijn indices allow us to conveniently extend
the interpretation by simply prepending the value for the most recently quantified
variable when recursively entering the scope of a quantifier. If I ⊧ ϕ holds, we say
I satisfies ϕ or I is a model of ϕ.

Formulas may have free variables. The functions V1 and V2 collect the free first-
order and second-order variables.

primrec V1 ∶∶ Φ → nat set where
V1 (m1 <m2) = {m1, m2}
V1 (m ∈ M) = {m}
V1 (ϕ∨ψ) = V1 ϕ ∪ V1 ψ

V1 (¬ ϕ) = V1 ϕ

V1 (∃1 ϕ) = ⌊V1 ϕ∖{0}⌋
V1 (∃2 ϕ) = ⌊V1 ϕ⌋

primrec V2 ∶∶ Φ → nat set where
V2 (m1 <m2) = {}
V2 (m ∈ M) = {M}
V2 (ϕ∨ψ) = V2 ϕ ∪ V2 ψ

V2 (¬ ϕ) = V2 ϕ

V2 (∃1 ϕ) = ⌊V2 ϕ⌋
V2 (∃2 ϕ) = ⌊V2 ϕ∖{0}⌋

The notation ⌊X⌋ is shorthand for (λx. x− 1) ● X, which reverts the increasing effect
of an existential quantifier on previously bound or free variables. To obtain only
free variables, bound variables are removed when their quantifier is processed, at
which point the bound variable has index 0.

72 Chapter 7. WMSO Equivalence via Regular Expression Equivalence

Just as for Π-extended regular expressions, not all formulas in Φ are meaningful.
Consider 0 ∈ 0, where 0 is both a first-order and a second-order variable. To ex-
clude such formulas, we define the predicate wfΦ ∶∶ nat → Φ → bool as wfΦ n ϕ =
(V1 ϕ∩V2 ϕ = {}) ∧ wfΦ

0 n ϕ and call a formula ϕ n-wellformed if wfΦ n ϕ holds. The
recursively defined predicate wfΦ

0 is used to impose further assumptions on the
structure of n-wellformed formulas, which will simplify our proofs.

primrec wfΦ
0 ∶∶ nat→ Φ → bool where

wfΦ
0 n (m1 <m2) = m1 < n ∧ m2 < n

wfΦ
0 n (m ∈ M) = m < n ∧ M < n

wfΦ
0 n (ϕ∨ψ) = wfΦ

0 n ϕ ∧ wfΦ
0 n ψ

wfΦ
0 n (¬ ϕ) = wfΦ

0 n ϕ
wfΦ

0 n (∃1 ϕ) = wfΦ
0 (n+ 1) ϕ ∧ 0 ∈ V1 ϕ ∧ 0 ∉ V2 ϕ

wfΦ
0 n (∃2 ϕ) = wfΦ

0 (n+ 1) ϕ ∧ 0 ∉ V1 ϕ ∧ 0 ∈ V2 ϕ

The predicate wfΦ
0 n ϕ ensures that the index of every free variable in ϕ is below n,

thereby guaranteeing that no array-out-of-bound accesses will happen in ⊧ given
an n-wellformed formula and an interpretation of length n. Moreover, wfΦ

0 checks
that bound variables are correctly used as first-order or second-order with respect
to their binders and excludes formulas with unused binders; unused binders are
obviously superfluous.

Next, we turn our attention to the alternative existing semantics for WMSO for-
mulas: M2L [7, 68]. Early versions of MONA implemented the M2L semantics.
M2L semantics fits more naturally into the realm of automata. The difference
between the two semantics lies only in the treatment of quantifiers. In WS1S, a
quantified variable may be assigned arbitrarily large sets. In M2L, allowed assign-
ments are bounded by the some number #I greater than all numbers occurring
in the interpretation I, formally ∀x ∈ ⋃∣I∣

i=0 I[i]. x < #I. The number #I is intrinsic
to an interpretation—that is the type interp is not just nat fset list but a subtype of
nat × nat fset list additionally constrained by the above boundedness assumption.
Here, for simplicity (mainly in order to be able to use the standard list notation on
interp) we pretend that this is not the case and #I is computable from I. For WS1S
the value of #I does not matter for satisfiability. Also note that #I /= ∣I∣ in general.

The decision procedure for M2L will arise as a natural by-product on the way to a
decision procedure for WS1S . We introduce its semantics formally, written I ⊧< ϕ.
Only the quantifier cases differ from the definition of ⊧.

I ⊧< (∃1 ϕ) = ∃p. (p < #I) ∧ ({p} # I) ⊧< ϕ
I ⊧< (∃2 ϕ) = ∃P. (∀p ∈ P. p < #I) ∧ (P # I) ⊧< ϕ

The subtle difference between M2L and WS1S is best illustrated by the formula
∃2 (∀1 0 ∈ 1) (with names: ∃X.∀x. x ∈ X). In the M2L semantics ∃2 (∀1 0 ∈ 1) is sat-
isfied by all wellformed interpretations—the witness set for the outer existential

7.2. From WMSO Formulas to Regular Expressions 73

quantifier is for a wellformed interpretation I just the set {0, . . . , #I − 1}. In contrast,
in WS1S, there is no finite set which contains all arbitrarily large positions, thus
∃2 (∀1 0 ∈ 1) is unsatisfiable.

Although equally expressive as WS1S and somehow unusual in its treatment of
quantifiers, the logic M2L has certain advantages, for example it yields a better
complexity for the bounded model construction problem [7]. Therefore, M2L is not
just an ad hoc intermediate construct, and obtaining a decision procedure for it as
well (basically for free) is of some value.

Two formulas are equivalent if they have the same models. Thus, we consider the
language of a formula to be the set of its models encoded as words. The encoding
of models (or interpretations in general) is standard: a finite set of natural num-
bers X is transformed into a list of Booleans, where ⊺ in the n-th positions means
that n ∈ X. For interpretations the encoding function enc applies this transforma-
tion pointwise and pads the lists with �s at the end to have length #I; we omit its
obvious definition. For example for I = [{1, 2, 3}, {0, 2}] with #I = 4, we obtain
enc I = [[�, ⊺, ⊺, ⊺], [⊺, �, ⊺, �]], which we transpose to obtain the formal word wI

over the alphabet bool ∣I∣ (each letter is a vector, that is a list of fixed length).

wI = [(�⊺) , (⊺�) , (⊺⊺) , (⊺�)]

In wI a row corresponds to an assignment to a variable. For first-order variables a
row must contain exactly one ⊺. Finally, we can defined the WS1S-language of an
n-wellformed formula as LΦ n ϕ = {wI ∣ I ⊧ ϕ ∧ ∣I∣ = n ∧ (∀m ∈ V1 ϕ. sing (I[m]))}.
Similarly, the M2L-language of an n-wellformed formula uses the bounded seman-
tics ⊧< as LΦ

<
n ϕ = {wI ∣ I ⊧< ϕ ∧ ∣I∣ = n ∧ (∀m ∈ V1 ϕ. sing (I[m])) ∧ #I /= 0}, where for

technical reasons we exclude interpretations with #I = 0, thereby ensuring that [] is
not contained in the M2L-language of a formula.

Note that we consider every column of wI as a letter of a new alphabet, which we in-
stantiate for the underlying alphabet Σn = booln of Π-extended regular expressions
of Chapter 6. Furthermore, the second parameter π ∶∶ Σn+1 → Σn of our decision
procedure for those regular expressions can now also be instantiated with tl where
tl (x # xs) = xs. Thus, the projection Π operates on words by removing the first row
from words in the language of the body expression, reflecting the semantics of an
existential quantifier.

7.2 From WMSO Formulas to Regular Expressions

We have fixed the underlying alphabet type bool list of the language of a formula.
In principle, we could start translating formulas of type Φ into regular expressions
of type bool list RE. However, the abstraction for atoms introduced in Section 6.3
caters for a more efficient encoding of formulas. We define the datatype atom as

74 Chapter 7. WMSO Equivalence via Regular Expression Equivalence

datatype atom = ASing bool list ∣ ANth var bool ∣ ANth2 var var

Each constructor of atom represents a set of elements of type bool list. The construc-
tor ASing represents the singleton set containing the constructor’s argument. The
atom ANth m b represents the set of boolean vectors which have the value b in their
m-th entry. The remaining constructor ANth2 has a similar purpose. Let us make
this precise by instantiating the two parameters memA and wfA from Section 6.3.

primrec memA ∶∶ atom→ bool list→ bool where
memA (ASing bs) bs′ = (bs = bs′)
memA (ANth m b) bs = (bs[m]←→ b)
memA (ANth2 m M) bs = bs[m] ∧ bs[M]

primrec wfA ∶∶ nat→ atom→ bool where
wfA n (ASing bs) = ∣bs∣ = n
wfA n (ANth m _) = m < n
wfA n (ANth2 m M) = m < n ∧ M < n

Now, we are set to tackle the translations of formulas into regular expressions.
WMSO formulas interpreted in M2L are translated by means of the following func-
tion.

primrec mkRE< ∶∶ Φ → atom RE where

mkRE< (m1 <m2) = ¬ ∅ ⋅ ANth m1 ⊺ ⋅ ¬ ∅ ⋅ ANth m2 ⊺ ⋅ ¬ ∅
mkRE< (m ∈ M) = ¬ ∅ ⋅ ANth2 m M ⋅ ¬ ∅
mkRE< (ϕ∨ψ) = mkRE< ϕ + mkRE< ψ

mkRE< (¬ ϕ) = ¬ mkRE< ϕ

mkRE< (∃1 ϕ) = Π (mkRE< ϕ ∩ WF {0})
mkRE< (∃2 ϕ) = Π (mkRE< ϕ)

At first, we ignore the function WF that is used in the case of the first-order quan-
tifier. The natural number parameter of mkRE< indicates the number for free vari-
ables for the processed formula. The parameter is increased when entering recur-
sively the scope of an existential quantifier.

Let us explain the intuition behind the translation exemplified by the m1 <m2 case.
We fix a wellformed model I of m ∈ M. This model must satisfy sing (I[m]) and
it (I[m]) ∈ I[M], or equivalently there must exist a Boolean vector bs of length n
and a position p such that I[m] = {p}, wI[p] = bs, and bs[m] = bs[M] = ⊺. There-
fore, the letter at position p of wI is matched by the “middle” part ANth2 m M of
mkRE< (m ∈ M), while the subexpressions ¬ ∅ (whose language is Σ∗

n) match the
first p and the last #I − p− 1 letters of wI .

7.2. From WMSO Formulas to Regular Expressions 75

Conversely, if we fix a word from mkRE< (m ∈ M), it will be equal to an encoding
of an interpretation that satisfies m ∈ M by a similar argument. However, the in-
terpretation might be not wellformed for m ∈ M. This happens because the regular
expression mkRE< (m ∈ M) does not capture the distinction between first-order and
second-order variables: it accepts encodings of interpretations that have the value
⊺ more than once at different positions representing the same first-order variable.
This indicates that the subexpressions ¬ ∅ in the base cases are not precise enough,
but also in the case of Boolean operators similar issues arise. So instead of tinkering
with the base cases, it is better to separate the generation a regular expression that
encodes models from the one that encodes wellformed interpretations. To rule out
not wellformed interpretations is exactly the purpose of the WF function.

definition WF ∶∶ var set→ atom RE where

WF X = ⋂m∈X ((ANth m �)∗ ⋅ ANth m ⊺ ⋅ (ANth m �)∗)

The regular expression WF (V1 ϕ) accepts exactly the encodings of wellformed in-
terpretations (both models and non-models, therefore semantics-independent) for
ϕ by ensuring that first-order variables are encoded correctly (by forcing the encod-
ing of an interpretation to contain exactly one ⊺ in rows belonging to a first-order
variable).

theorem ∀m ∈ X. m < nÐ→
L n (WF X) = {wI ∣ ∣I∣ = n ∧ (∀m ∈ X. sing (I[m]))}

Using WF in every case of the recursive definition of mkRE< is sound but very
redundant—instead it is enough to perform the intersection once globally for the
entire formula and additionally for every variable introduced by the first-order
existential quantifier.

WMSO formulas interpreted in WS1S are translated into regular expressions by
means of the function mkRE. The definition of mkRE is basically the same as the
one of mkRE< except for the existential quantifier cases and the natural number
parameter n that indicates the number of free variables and needs to be threaded
through the recursion here (because of the change in the quantifier cases).

primrec mkRE ∶∶ nat→ Φ → atom RE where

mkRE n (m1 <m2) = ¬ ∅ ⋅ ANth m1 ⊺ ⋅ ¬ ∅ ⋅ ANth m2 ⊺ ⋅ ¬ ∅
mkRE n (m ∈ M) = ¬ ∅ ⋅ ANth2 m M ⋅ ¬ ∅
mkRE n (ϕ∨ψ) = mkRE n ϕ + mkRE n ψ
mkRE n (¬ ϕ) = ¬ mkRE n ϕ
mkRE n (∃1 ϕ) = Q (�n) (Π (mkRE (n+ 1) ϕ ∩ WF {0}))
mkRE n (∃2 ϕ) = Q (�n) (Π (mkRE (n+ 1) ϕ))

76 Chapter 7. WMSO Equivalence via Regular Expression Equivalence

A first step to understand the required change is to note that interpretations can be
arbitrarily padded or shortened with the letter �n from the right without affecting
their status of being models or non-models of a given formula. Thus, a language
of a formula must be closed under all such paddings/shortening. Now, after pro-
jection, the language of a regular expression might not fulfill this invariant. For ex-

ample the language of the 1-wellformed expression r = Π ((�⊺) ⋅ (
⊺
�) ⋅ (

�
�)

∗

) does

contain the word [⊺1, �1] but not the word [⊺1] and is therefore not closed under
all shortenings by �1. In contrast, the 2-wellformed argument expression to Π in r
does fulfill the invariant.

The regular operation Q ∶∶ bool list → atom RE → atom RE implements this padding/
shortening on the regular expression level and reestablishes thereby the required
invariant. (In the literature, this process of reestablishing the invariant after a pro-
jection is called futurization [68].) In more detail, the following language identity
holds for an n-wellformed Π-extended regular expression r.

theorem wf n r Ð→ L n (Q a r) = {x @ am ∣ ∃l. x @ al ∈ L n r}

The concrete executable definition of Q is more involved. On a high-level, Q is
computed by repeatedly deriving from the right by a via the function δa (followed
by ACI-normalization) until a repetition is encountered. The definition of δis iden-
tical to the familiar Brzozowski derivative δ that derives from the left except for the
concatenation and iteration cases (in which δis dual).

primrec δ∶∶ α→ αRE→ αRE where

δa ∅ = ∅
δa ε = ∅
δa (A b) = if a = b then ε else ∅
δa (r + s) = δa r + δa s
δa (r ⋅ s) = r ⋅ δa s + if o s then δa r else ∅
δa (r∗) = r∗ ⋅ δa r
δa (r ∩ s) = δa r ∩ δa s
δa (¬ r) = ¬ δa r
δa (Π r) = Π (⊕b∈π−a δr b)

Unsurprisingly, due to their similarity to ordinary Brzozowski derivatives, right
derivatives preserve wellformedness, compute right quotients, and have finitely
many equivalence classes modulo ACI.

theorem wf n r Ð→ wf n (δa r)
theorem wf n r Ð→ L n (δa r) = {w ∣ w @ [a] ∈ L n r}
theorem finite {⟨fold δw r⟩ ∣ w ∶∶ α list}

7.2. From WMSO Formulas to Regular Expressions 77

Repeatedly deriving from the right is implemented using the while combinator. The
state over which the combinator iterates has type bool×αRE list. The Boolean com-
ponent indicates whether the loop should be executed once more, while the list
contains all the derivatives computed so far in reversed order (the last element
of the list is the initial regular expression). The loop is exited on the first déjà
vu. The termination of this procedure is established by the finiteness theorem of
ACI-equivalent right derivatives. After exiting the while loop, the operation Q
unions all the expressions computed so far, yielding an operation whose language
is {x ∣ ∃l. x @ al ∈ L n r}. To obtain the desired semantics the iteration of a (lifted to
the atom type by ASing) is concatenated to the union.

definition b ∶∶ bool×αRE list→ bool where
b (b, _) = b

definition c ∶∶ α→ bool×αRE list→ bool×αRE list where
c a (_, rs) =

let s = ⟨ δa (hd rs)⟩
in if s ∈ set rs then (�, rs) else (⊺, s # rs)

definition Q ∶∶ α→ αRE→ αRE where

Q a r =
let R = case while b (c a) (⊺, ⟨r⟩) of Some (_, rs)⇒ set rs
in (⊕r∈R r) ⋅ (ASing a)∗

Finally, we can establish the language correspondence between formulas and gen-
erated regular expressions.

theorem wfΦ n ϕÐ→ LΦ n ϕ = L n (mkRE n ϕ ∩ WF (V1 ϕ))
theorem wfΦ n ϕÐ→ LΦ

<
n ϕ = L n (mkRE< ϕ ∩ WF (V1 ϕ))∖ {[]}

The proof is by structural induction on ϕ. Above we have seen the argument for the
base case m ∈ M, the other base case follows similarly. The cases ∃1 ϕ and ∃2 ϕ follow
easily from the semantics of Π given by our concrete instantiation for π and Σn and
the induction hypothesis. The most interesting cases are, somehow unexpectedly,
those for Boolean operators. Although the definitions are purely structural, sets
of encodings of models must be composed or, even worse, complemented in the
inductive steps. The key property required here is that the encoding of interpre-
tations as formal words does not identify models and non-models: two different
wellformed interpretations for a formula—one being a model, the other being a
non-model—are encoded into different words. This is again established by struc-
tural induction on formulas for both semantics.

theorem wI = wJ ∧ wf n ϕ ∧ ∣I∣ = ∣J∣ = n ∧
(∀x ∈ V1 ϕ. sing (I[x]) ∧ sing (J[x]))Ð→ I ⊧ ϕ←→ J ⊧ ϕ

78 Chapter 7. WMSO Equivalence via Regular Expression Equivalence

theorem wI = wJ ∧ wf n ϕ ∧ ∣I∣ = ∣J∣ = n ∧
(∀x ∈ V1 ϕ. sing (I[x]) ∧ sing (J[x]))Ð→ I ⊧< ϕ←→ J ⊧< ϕ

7.3 Decision Procedure

To decide language equivalence of WMSO formulas we now can simply translate
them to Π-extended regular expressions and use then the decision procedures on
those expressions developed in Chapter 6. We obtain the following four interpre-
tations of our locales: for each of the two semantics a totally correct one using
only ACI normalization and a partially correct one using the stronger normaliza-
tion function. Note that we add the empty word into both regular expression when
working with the M2L semantics. This is allowed, since [] is not a valid encoding of
an interpretation, and necessary because the characteristic theorem of mkRE< does
not give us any information whether the empty word is contained in the output of
mkRE< or not.

interpretation M2LD
Π ∶ fin_coalgD where

Σ = Σn

i ϕ = ⟨mkRE< ϕ⟩
o r = o r
d a r = ⟨δ a r⟩
Lσ r = L n r
Lτ ϕ = LΦ

<
n ϕ

wfσ r = wf n r
wfτ ϕ = wfΦ n ϕ

interpretation M2LP
Π ∶ coalgD where

Σ = Σn

i ϕ = ⟨⟨⟨mkRE< ϕ⟩⟩⟩
o r = o r
d a r = ⟨⟨⟨δ a r⟩⟩⟩
Lσ r = L n r
Lτ ϕ = LΦ

<
n ϕ

wfσ r = wf n r
wfτ ϕ = wfΦ n ϕ

interpretation WS1SD
Π ∶ fin_coalgD where

Σ = Σn

i ϕ = ⟨mkRE n ϕ⟩
o r = o r
d a r = ⟨δ a r⟩
Lσ r = L n r
Lτ ϕ = LΦ n ϕ
wfσ r = wf n r
wfτ ϕ = wfΦ n ϕ

interpretation WS1SP
Π ∶ coalgD where

Σ = Σn

i ϕ = ⟨⟨⟨mkRE n ϕ⟩⟩⟩
o r = o r
d a r = ⟨⟨⟨δ a r⟩⟩⟩
Lσ r = L n r
Lτ ϕ = LΦ n ϕ
wfσ r = wf n r
wfτ ϕ = wfΦ n ϕ

As a first sanity check, we apply our translation for M2L to the simple formula
ϕ = ∃2 (∀1 0 ∈ 1) (with names: ∃X.∀x. x ∈ X), that is valid under the M2L seman-
tics (but unsatisfiable under the WS1S semantics as discussed earlier). Since ϕ is
closed, it is 0-wellformed and our underlying alphabet is Σ0 = bool0 = {()} for some
base alphabet Σ. The function ⟨⟨⟨mkRE< ϕ⟩⟩⟩ translates ϕ to the accepting Π-extended
regular expression Π r over Σ0 where r is an abbreviation:

r = ¬ Π (((ANth 0 �)∗ ⋅ANth 0 ⊺⋅(ANth 0 �)∗) ∩ ¬ (¬ ∅⋅ANth2 0 1 ⋅¬ ∅))

7.4. Case Study: Finite-Word LTL 79

Derivatives of Π r by words of the form ()n for n > 0 are all equal modulo ⟨⟨⟨_⟩⟩⟩ to a
single (also accepting) expression. More precisely, for all w ∈ Σ∗

0 ∖ {[]} we have:

fold δ w (Π r) = Π r + Π (r ∩ ¬ Π ((ANth 0 �∗) ∩ ¬ (¬ ∅ ⋅ ANth2 0 1 ⋅ ¬ ∅)))

Because all derivatives of its translation are accepting, the formula ϕ must be valid.
We would have loved to include the same example using the WS1S semantics as
well, but unfortunately the output of the translation (and normalization) is a regu-
lar expression with more than 2000 constructors (which the decision procedure still
can handle).

Finally, we want to remark that the usage of de Bruijn indices, which is often per-
ceived as an intrusion of syntax into the semantics, could be in principle easily hid-
den from the user of our procedure by means of a simple transformation. Standard
nameful WMSO formulas are given by the following datatype.

datatype Ψ = var < var ∣ var ∈ var ∣ Ψ ∨Ψ ∣ ¬ Ψ ∣ ∃1var. Ψ ∣ ∃2var. Ψ

In Ψ the type var denotes some arbitrary type of variable names and not just natural
numbers as the de Bruijn indices in Φ. Formulas of type Ψ can be equipped with
the standard M2L or WS1S semantics (which we omit here). Then, the recursive
translation ι gets rid of the names in a semantics preserving fashion.

primrec ι ∶∶ var list→ Ψ → Φ where

ι xs (m1 <m2) = idx xs m1 < idx xs m2
ι xs (m ∈ M) = idx xs m ∈ idx xs M
ι xs (ϕ∨ψ) = ι xs ϕ∨ ι xs ψ
ι xs (¬ ϕ) = ¬ ι xs ϕ
ι xs (∃1x. ϕ) = ∃1 (ι (x # xs) ϕ)
ι xs (∃2x. ϕ) = ∃2 (ι (x # xs) ϕ)

The function idx ∶∶ α list → α → nat computes the index of the first occurrence of a
given element in a given list and some arbitrary value, if there is no occurrence.
Given a nameful formula ψ ∶∶ Ψ, the function ι must then be called with an arbi-
trarily ordered list xs of free variables of ψ, to obtain the corresponding nameless
formula ι xs ψ that denotes the same regular language as ψ.

7.4 Case Study: Finite-Word LTL

We want to execute the code generated by Isabelle/HOL for our decision proce-
dures on some larger examples. For simplicity, we first focus on M2L.

To create larger formulas, it is helpful to introduce some syntactic abbreviations.
Checking that a formula is valid amounts to checking its equivalence to T. We call

80 Chapter 7. WMSO Equivalence via Regular Expression Equivalence

the function that performs this check Thm. Implication ϕ→ ψ is defined as (¬ ϕ)∨ψ
and universal quantification∀i ϕ as before as ¬ ∃i ¬ ϕ. Next, we introduce temporal
logical operators always ◻P ∶∶ nat → Φ and eventually ◇P ∶∶ nat → Φ depending on
P ∶∶ nat → Φ—a formula parameterized by a single variable t indicating the time.
The operators have their usual meaning except that with the given M2L semantics
the time variable ranges over a fixed set determined by the interpretation. Addi-
tionally, we lift the disjunction and implication to time-parameterized formulas.

◻P t = ∀1 (¬ t + 1 < 0→ P 0)
◇P t = ∃1 (¬ t + 1 < 0∧ P 0)
(P → Q) t = P t → Q t
(P ∨ Q) t = P t ∨Q t

Note that t + 1 has nothing to do with the next time step. It is just the lifting of the
de Bruijn index under a single quantifier. The same applies to the de Bruijn index 0.
Above, 0 represents all/some time steps after the time step represented by t.

Formulas of linear temporal logic usually reason about atomic predicates for which
the interpretation must specify at which points in time they are true. This informa-
tion can be encoded by second-order variables.

A free second-order variable can be namely used to encode an atomic predicate.
The variable denotes the set of points in time for which the atomic predicate holds.
Thus, the LTL formulas ◻a→◇a and ◻a→ ◻ ◇a (with a single atomic predicate a)
can be modeled by the following two formulas.

∀1 (◻(λt. t ∈ 2) → ◇ (λt. t ∈ 2)) 0

∀1 (◻(λt. t ∈ 2) → ◻ ◇ (λt. t ∈ 3)) 0

Both formulas have one free second-order variable 0 (modeling a) that is lifted
when passing two or three quantifiers. The generated algorithm shows the equiv-
alence of both formulas to T within milliseconds under both semantics.

In order to explore the limits of our decision procedure, formulas over more atomic
predicates are required. Therefore, we consider the distributivity theorems of ◻
over n-ary implications as shown in Figure 7.1. The size of ϕn grows linearly with
n. So does the number of free variables in ϕn. For the underlying alphabet Σn,
however, this implies exponential growth.

ϕ1 = ∀1 (◻(λt. t ∈ 2)→ ◻(λt. t ∈ 2)) 0
ϕ2 = ∀1 (◻(λt. t ∈ 2→ t ∈ 3)→ ◻(λt. t ∈ 2)→ ◻(λt. t ∈ 3)) 0
ϕ3 = ∀1 (◻(λt. t ∈ 2→ t ∈ 3→ t ∈ 4)→ ◻(λt. t ∈ 2)→ ◻(λt. t ∈ 3)→ ◻(λt. t ∈ 4)) 0

Figure 7.1: Definition of ϕn

7.4. Case Study: Finite-Word LTL 81

n size ICFP 2013 Thm ThmP Thmdual

1 54/31907 0/− 0/224.4 0/ 22.6 0/ 0.4
2 81/48797 2/− 0.3/ − 0/434.1 0/14.4
3 108/65687 2640/− 64.4/ − 3.9/ − 17.8/ −

Figure 7.2: Benchmarks for ϕn (under M2L/WS1S semantics)

Formulas ϕi are theorems under both semantics. The running times of the decision
procedure Thm (using ACI normalization) in seconds are summarized in Figure 7.2
(column Thm, first number refers to the M2L semantics, the second to WS1S). The
column “ICFP 2013” recapitulates the running times from the earlier unoptimized
version1 of this procedure [113].

Figures 7.2 also shows the sizes (column size counting the number of constructors)
of the regular expressions generated from the input formulas. These numbers show
a huge gap between WS1S and M2L that also shows up in the runtime results. Our
implementation of Q is very inefficient. As future work, we plan to investigate
the addition of this regular operator as a constructor to the data type of regular
expressions, similarly to our addition of the projection operator.

The last two columns show the running times of two variations of Thm: ThmP us-
ing the ⟨⟨⟨−⟩⟩⟩ normalization instead of ⟨−⟩ and Thmdual working with dual regular
expressions introduced at the end of Chapter 6. Both guarantee only partial correct-
ness. The procedure Thmdual seems to be the better choice for the WS1S semantics.

The attentive reader will have noticed that we have said nothing about how sets
are represented in the code generated from our mathematical definitions. We use
the default implementation as lists (with a linear membership test) from Isabelle’s
library for our measurements. We have also experimented with an existing verified
red–black tree implementation. Isabelle’s code generator supports the transparent
replacement of sets by some verified implementation [53]. Unfortunately, the over-
head incurred by the trees outweighed the gain of a logarithmic membership test
instead of a linear one.

The performance of our automatically generated code may appear disappointing
but that would be a misunderstanding of our overall intentions. We see our work
primarily as a succinct and elegant functional program that may pave the way
towards verified and efficient decision procedures. As a bonus, the generated code
is applicable to small examples. In the context of interactive theorem proving, this
is primarily what one encounters: small formulas. Any automation is welcome
here because it saves the user time and effort. Automatic verification of larger
systems is the domain of highly tuned implementations such as MONA.

1This early version, for example, does not employ the atom abstraction, but works instead with big
unions of singleton atoms.

Chapter 8

Derivatives of Formulas

As the historians have it all mixed up, I repeat:
Whether you like it or not, the automata are
there, in the inside of MT11 formulas.

— Julius R. Büchi (1983)

Do you think I am an automaton?
—a machine without feelings?

— Charlotte Brontë, Jane Eyre (1847)

The automata that are “in the inside” of WMSO formulas are traditionally2 exposed
by a recursive translation of formulas into automata—the classical logic-automaton
connection [26, 58]. A subsequent (or eager intermediate as in case of MONA)
minimization of the resulting automata completes the traditional decision proce-
dures. However, formulas are more than just automata: the may have no feelings
but they do carry a rich algebraic structure including binders and high-level con-
structs. During the translation all the rich structure is lost. On the other hand, the
subsequent minimization might have benefited from some simplifications on the
formula level. As an example, given a formula ψ = ∃x. ϕ where ϕ does not contain
x it is immediately clear that ψ is equivalent to ϕ. When translated to automata,
however this equivalence only becomes visible after performing the minimization,
the running time of which necessarily will depend on the size of ϕ’s translation.

Concerning the algebraic structure, regular expressions are situated somewhere in
between WMSO formulas and automata. In the previous chapter, we have pre-
sented a semantics-preserving translation of formulas into Π-extended regular ex-
pressions. Thereby, equivalence of formulas was reduced to equivalence of regular
expressions. Still, the above example ψ = ∃x. ϕ suffers from the same problem: it
is hard (if not impossible) to tell whether Π (mkRE< ϕ) is equivalent to mkRE< ϕ

without running a general decision procedure.

Here, we avoid translating formulas altogether. Instead we define a coalgebraic
structure—notions of derivatives (Section 8.1) and empty word acceptance (Sec-
tion 8.2)—directly on WMSO formulas. From this coalgebraic structure we ob-
tain decision procedures for the two semantics WS1S and M2L by instantiating our
framework (Section 8.3). Then we show how altering the modeling of interpreta-
tions slightly (which also induces a change in the coalgebraic structure) leads to

1MT1 is just another name for WS1S.
2The only notable exception, we are aware of, is the procedure implemented in the Toss tool [46].

83

84 Chapter 8. Derivatives of Formulas

an empirically more efficient algorithm (Section 8.4). We conclude the chapter with
two case studies: one investigating the proposed procedure in a more realistic albeit
unverified setting (Section 8.5); the other stepping out of the realm of WMSO and
devising a derivative operation for formulas of Presburger arithmetic (Section 8.6).
This chapter includes the material presented at CSL 2015 [111].

8.1 Formula Derivatives

The syntax Φ and the two semantics ⊧ and ⊧< of our input formulas stay the same
as in Chapter 7. However, we will supply the coalgebraic structure for a slightly
modified syntax Ψ and simplified semantics ⊫ and ⊫<, which we define next. In
Section 8.3 a simple translation will connect the two variants by instantiating the
parameter i of our locale. The syntax, which still uses de Bruijn indices, is extended
with few additional base cases. Moreover, we want to factor out at first the na-
tive support for first-order quantification. We can then think of all variables as
being second-order, although we keep the convention of writing lower-case vari-
ables where the intuition demands a first-order variable. Therefore in Ψ there is
only one existential quantifier corresponding to the second-order quantifier of Φ.

datatype Ψ = T ∣ F ∣ FO var ∣ Z var ∣ var < var ∣ var ∈ var ∣ Ψ ∨Ψ ∣ ¬ Ψ ∣ ∃ Ψ

The additional base formulas T and F represent truth and falsity, respectively. The
formula FO x asserts that x is a first-order variable: it is satisfied by all interpre-
tations that assign a singleton finite set to x. The formula Z x is satisfied by all
interpretations that assign the empty set to x. We slightly postpone the explanation
of its usefulness. We define the simplified WS1S semantics formally as follows.

primrec⊫ ∶∶ interp→ Ψ → bool where
I ⊫ T = ⊺
I ⊫ F = �
I ⊫ (FO x) = sing (I[x])
I ⊫ (Z x) = (I[x] = {})
I ⊫ (x < y) = sing (I[x]) ∧ sing (I[y]) ∧ it (I[x]) < it (I[y])
I ⊫ (x ∈ X) = sing (I[x]) ∧ it (I[x]) ∈ I[X]
I ⊫ (ϕ∨ψ) = I ⊫ ϕ ∨ I ⊫ ψ

I ⊫ (¬ ϕ) = ¬(I ⊫ ϕ)
I ⊫ (∃ ϕ) = ∃P. ∣P∣ <∞ ∧ (P # I)⊫ ϕ

As before the simplified M2L semantics ⊫< only differs in the quantifier case: it re-
stricts the quantified values to be bounded by #I.

I ⊫< (∃ ϕ) = ∃P. (∀p ∈ P. p < #I) ∧ (P # I)⊫< ϕ

8.1. Formula Derivatives 85

The simplified WS1S language of a formula is then defined as LΨ n ϕ = {wI ∣ I ⊫ ϕ ∧
∣I∣ = n} and the simplified M2L language similarly as LΨ

<
n ϕ = {wI ∣ I ⊫< ϕ ∧ ∣I∣ = n}.

Since there are only second-order variables, no wellformedness conditions on the
interpretation are necessary except for the requirement to assign a value to all the
free variables of an n-wellformed formulas. The n-wellformedness of formulas wfΨ

merely checks that all free variables are bounded by n.

primrec wfΨ ∶∶ nat→ Ψ → bool where
wfΨ n T = ⊺
wfΨ n F = ⊺
wfΨ n (FO m) = m < n
wfΨ n (Z m) = m < n
wfΨ n (m1 <m2) = m1 < n ∧ m2 < n
wfΨ n (m ∈ M) = m < n ∧ M < n
wfΨ n (ϕ∨ψ) = wfΨ n ϕ ∧ wfΨ n ψ
wfΨ n (¬ ϕ) = wfΨ n ϕ
wfΨ n (∃ ϕ) = wfΨ (n+ 1) ϕ

Finally, we are ready to introduce the central notion of this chapter: the derivative
of a formula. Brzozowski derivatives compute symbolically for a regular expres-
sion r the regular expression δ a r whose language is the left quotient of r’s language
by a. A formula derivative is the analogous operation on a formula. Given a formula
ϕ, its derivative δ v ϕ is a formula whose language is the left quotient of ϕ’s lan-
guage by the letter v ∶ bool n, where n is the number of free variables of ϕ. Formula
derivatives are defined by primitive recursion as follows.

primrec δ ∶∶ bool list→ Ψ → Ψ where

δ v T = T
δ v F = F

δ v (Z x) =
⎧⎪⎪⎨⎪⎪⎩

F if v[x]
Z x otherwise

δ v (FO x) =
⎧⎪⎪⎨⎪⎪⎩

Z x if v[x]
FO x otherwise

δ v (x < y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x < y if ¬v[x] ∧ ¬v[y]
Z x∧ FO y if v[x] ∧ ¬v[y]
F otherwise

δ v (x ∈ X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x ∈ X if ¬v[x]
Z x if v[x] ∧ v[X]
F otherwise

δ v (ϕ∨ψ) = δ v ϕ∨ δ v ψ
δ v (¬ ϕ) = ¬ δ v ϕ
δ v (∃ ϕ) = ∃ (δ (⊺ # v) ϕ∨ δ (� # v) ϕ)

86 Chapter 8. Derivatives of Formulas

Here we see the first important usage of the FO x and Z x: to establish the closure
of Ψ under δ.

Let us try to intuitively understand some of the base cases of the definition. The
language of F is the empty set. The quotient of the empty set is again empty. Thus,
the derivative of F should be again F. For FO x, the language will contain all words
which have exactly one ⊺ in the x-th row in some letter. Thus, if we quotient this
language by a letter that has a � in the x-th row, we should obtain the same language
represented by formula FO x. However, once the first ⊺ in the x-th row has been
discovered by quotienting by a letter v that has a ⊺ in the x-th row (written v[x]),
the remaining words to be accepted must have only �’s in the x-th row—thus the
quotient is the language represented by formula Z x.

Other base cases follow similarly. The most interesting recursive case is that of
the existential quantifier. The first observation that should be made is that if ϕ
is a formula with n + 1 free variables, then ∃ ϕ is a formula with n free variables
(assuming that the bound variable 0 is used in ϕ). This implies that when we derive
∃ ϕ by v, we cannot derive ϕ by v, but only by some vector b # v because all variables
(de Bruijn indices) are shifted. Since the Boolean b is unknown, we consider both
possibilities: b = ⊺ and b = �. The existential quantifier requires just one witness
assignment for the quantified variable. This means only one of the possibilities has
to hold—that is why the recursive calls δ (⊺ # v) ϕ and δ (� # v) ϕ are connected by
disjunction.

To reason more directly about interpretations and derivatives, we lift the list con-
structor # on words to interpretations. This yields the operator CONS, with the
characteristic property w(CONS v I) = v # wI assuming ∣v∣ = ∣I∣, defined as follows.

fun CONS ∶∶ bool list→ interp→ interp where

CONS [] [] = []
CONS (⊺ # v) (X # I) = ({0} ∪ (+1) ● X) # CONS v I
CONS (� # v) (X # I) = ((+1) ● X) # CONS v I

Additionally, we require #(CONS v I) = #I + 1. We obtain the following key charac-
terization of the derivative by two straightforward inductions on ϕ.

theorem wfΨ n ϕ ∧ ∣I∣ = ∣v∣ = nÐ→ I ⊫ δ v ϕ←→ CONS v I ⊫ ϕ

theorem wfΨ n ϕ ∧ ∣I∣ = ∣v∣ = nÐ→ I ⊫< δ v ϕ←→ CONS v I ⊫< ϕ

In general, the set of all word derivatives {fold δ w ϕ ∣ w ∶∶ bool list list} can be infinite.
However, Brzozowski’s fundamental result about dissimilar derivatives or regular
expressions carries over: there are finitely many distinct word derivatives mod-
ulo associativity, commutativity and idempotence of ∨ (ACI, written ∼). As with
regular expressions, we implement an ACI normalization function ⟨_⟩ via smart

8.1. Formula Derivatives 87

constructors (the formal definition is very similar to the one on regular expressions
an therefore omitted).

theorem finite {⟨fold δ w ϕ⟩ ∣ w ∶∶ bool list list}

This theorem is proved by induction on ϕ. All cases except for ∃ ϕ are either obvi-
ous or carry over smoothly from Brzozowski’s proof. The proof of the existential
quantifier case resembles the projection case in the finiteness proof for Π-extended
regular expressions. By induction hypothesis we know that ϕ has a finite set D of
distinct derivatives modulo ACI. Some of the formulas in D can be disjunctions.
If we repeatedly split outermost disjunctions in D until none are left, we obtain a
finite set X of disjuncts. Each word derivative fold δ w (∃ ϕ) is ACI equivalent to
some ∃ (⋁Y) for some Y ⊆ X. Since X is finite, its powerset is also finite. Hence,
there are finitely many distinct fold δ w (∃ ϕ) modulo ACI.

Note that the above theorem (also the finiteness theorems for different structures) is
purely syntactic: no semantic (or language) equivalence is involved. In particular,
this theorem does not follow from the Myhill-Nerode theorem nor from the fact that
there are only finitely many semantically inequivalent formulas of bounded quan-
tifier rank. Although not all language equivalent formulas are also ACI equivalent,
ACI suffices for gaining finiteness.

Example 8.1. The formula ϕ = ∃ 1 ∈ 0 (or ∃X. x ∈ X in conventional notation) has three
distinct derivatives modulo ACI over the alphabet Σ1 = bool 1 = [(�), (⊺)] (we abbreviate
fold δ w by δw). Note that the subformula 1 ∈ 0 is derived by letters of the alphabet Σ2 =
bool 2 that consists of all Boolean vectors of length two.

• δ[] ϕ = ϕ ∼ ∃ (1 ∈ 0∨ 1 ∈ 0) = δ[(�)] ϕ ∼ δ(�)n ϕ

for all n

• δ[(⊺)] ϕ = ∃ (Z 1∨ F) ∼ ∃ ((Z 1∨ F)∨ (Z 1∨ F)) ∼ δ((�)n@(⊺)#(�)m) ϕ

for all m, n

• δ[(⊺),(⊺)] ϕ = ∃ (F∨ F)∨ (F∨ F) ∼ ∃ F ∼ δ((�)n@(⊺)#(�)m@(⊺)#w) ϕ

for all m, n, w

Figure 8.1 shows the bisimulation induced by formula derivatives (as our forthcoming deci-
sion procedure will produce it) for the above formula ϕ = ∃ 1 ∈ 0 and its equivalent ψ = FO 0
over the alphabet Σ1 = bool 1 = [(⊺), (�)]. The bisimulation is depicted as the product au-
tomaton of the automata whose states are derivatives of the formulas with transitions given
by δ. Accepting states are pairs (ϕ,ψ) for which o ϕ and o ψ holds (the definition of o is
the topic of the next section). They are marked with a double margin. Previously seen ACI
equivalent states, detected using the ACI normalization ⟨_⟩ and marked by a dashed back-
edge, are not explored further (and not even checked for being both accepting or both not
accepting). Self-loops annotated with ⟨_⟩ are omitted.

88 Chapter 8. Derivatives of Formulas

∃ 1 ∈ 0

FO 0
start

∃ (Z 1∨ F)
Z 0

∃ ((Z 1∨ F)∨ (Z 1∨ F))
Z 0

∃ ((F∨ F)∨ (F∨ F))
F

∃ F

F

∃ (F∨ F)
F

∃ (1 ∈ 0 ∨ 1 ∈ 0)
FO 0

δ (⊺)

δ (⊺)

δ (�)

⟨_⟩ δ (⊺)
δ (�)

⟨_⟩

⟨_⟩

δ (�)

⟨_⟩

Figure 8.1: Bisimilarity of ∃ 1 ∈ 0 and FO 0 via formula derivatives

8.2 Accepting Formulas

Defining a function that checks whether a regular expression accepts the empty
word is straightforward. A priori, the task seems barely harder for formulas—
check whether the empty interpretation {}n (that is encoded as the empty word)
satisfies a formula with n free variables. We start with the following attempt.

o< T = ⊺
o< F = �
o< (FO x) = �
o< (Z x) = ⊺
o< (x < y) = �
o< (x ∈ X) = �
o< (ϕ∨ψ) = o< ϕ ∨ o< ψ
o< (¬ ϕ) = ¬o< ϕ
o< (∃ ϕ) = o< ϕ

As the name of the function indicates this acceptance test will work only for the
M2L semantics, justifying M2L’s automata theoretic reputation. As we will see the
acceptance test for the number theoretic WS1S is by far more involved.

First, we should understand why o< works well for M2L but fails for WS1S. There-
fore, we consider the formula ϕ = ∃ (1 < 0) (= ∃y. x < y in conventional notation)
that behaves differently under the two semantics. Interpreted in WS1S, ϕ is true:

8.2. Accepting Formulas 89

for each natural number x there exists a bigger one. Interpreted in M2L, the fact
whether ϕ is true depends on the interpretation I: for example if #I = 4 then the
quantifier is allowed to assign to y only values smaller than 4. If additionally
I[x] = {3}, the formula becomes false. When checking acceptance, we only con-
sider interpretations I with #I = 0. Therefore, o< rightly returns � in the M2L setting
for our particular formula ϕ.

Asserting o< (∃ ϕ) = o< ϕ effectively corresponds to the restriction of M2L on the
quantified values. Fortunately, unrestricted WS1S quantifiers can be related to M2L
quantifiers by repeatedly padding the interpretations I with the letter 0∣I∣. This
means that we can reuse o< for WS1S if we can get rid of the padding. In the con-
text of automata this step is called futurization and is implemented by traversing
the automaton backwards using only 0∣I∣-labeled transitions [68]. Here, we work
with formulas. Thus traversing means deriving and traversing backwards means
deriving from the right. We therefore introduce a second derivative operation δ(a
mirrored δ) that computes the right quotient and is symmetric to the derivative δ.
The symmetry is caused by the fact that all encodings of models of our formulas
are nicely symmetric. In Section 8.4 we will modify the encodings with the goal of
obtaining a more efficient procedure, at the expense of giving up the symmetry.

primrec δ∶∶ bool list→ Ψ → Ψ where

δv T = T
δv F = F

δv (FO x) =
⎧⎪⎪⎨⎪⎪⎩

Z x if v[x]
FO x otherwise

δv (Z x) =
⎧⎪⎪⎨⎪⎪⎩

F if v[x]
Z x otherwise

δv (x < y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x < y if ¬v[x] ∧ ¬v[y]
FO x∧Z y if ¬v[x] ∧ v[y]
F otherwise

δv (x ∈ X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x ∈ X if ¬v[x]
Z x if v[x] ∧ v[X]
F otherwise

δv (ϕ∨ψ) = δv ϕ∨ δv ψ
δv (¬ ϕ) = ¬ δv ϕ
δv (∃ ϕ) = ∃ (δ(⊺ # v) ϕ∨ δ(� # v) ϕ)

A first thing worth noticing is that again the number of right derivatives δmodulo
ACI of ∨ is finite. The proof is analogous to the one for left derivatives.

theorem finite {⟨fold δw ϕ⟩ ∣ w ∶∶ bool list list}

90 Chapter 8. Derivatives of Formulas

Next, we establish a correspondence between the M2L semantics and right deriva-
tives. Therefore, we introduce the operation SNOC, symmetric to CONS that was
used for left derivatives, on interpretations.

fun SNOC ∶∶ bool list→ interp→ interp where

SNOC [] [] = []
SNOC (⊺ # v) (X # I) = ({#I} ∪ X) # SNOC v I
SNOC (� # v) (X # I) = X # SNOC v I

Just as for CONS, we require #(SNOC v I) = #I +1. Another routine induction yields
the fundamental property of right derivatives. Note that there is no equivalent
theorem for the WS1S semantics.

theorem wfΨ n ϕ ∧ ∣I∣ = ∣v∣ = nÐ→ I ⊫< δv ϕ←→ SNOC v I ⊫< ϕ

Finally, we define a function futurize to repeatedly apply δ0n for a given n (using
once again the while combinator), an operation ⌊_⌋_ to recursively apply futurize
to all quantifiers in a formula, and the acceptance test o for WS1S formulas. The
equations of ⌊_⌋_ are matched sequentially.

definition futurize ∶∶ nat→ Ψ → Ψ where

futurize n ϕ =
let (_, X) = the

(while (λ(ϕ, X). ϕ ∉ X) (λ(ϕ, X). (δ0n ϕ, {ϕ} ∪ X)) (ϕ, {}))
in ⋁X

fun ⌊_⌋_ ∶∶ Ψ → nat→ Ψ where

⌊ϕ∨ψ⌋n = ⌊ϕ⌋n ∨ ⌊ψ⌋n

⌊¬ ϕ⌋n = ¬ ⌊ϕ⌋n

⌊∃ ϕ⌋n = futurize n (∃ ⌊ϕ⌋n+1)
⌊ϕ⌋n = ϕ

definition o ∶∶ nat→ Ψ → bool where
o n ϕ = o< ⌊ϕ⌋n

Because the set of right derivatives modulo ACI is finite the function futurize does
always terminate. Moreover, we can prove the expected properties of the accep-
tance tests. We perform the proof in four steps. Below, (SNOC (0n))k denotes the
k-fold repeated application of SNOC (0n). Moreover, note that in case #I = 0 and
∣I∣ = n holds, I necessarily must have the shape {}n (also we have wI = []).

1. wfΨ n ϕ ∧ ∣I∣ = n ∧ #I = 0Ð→ o< ϕ←→ I ⊫< ϕ,

2. wfΨ n ϕ ∧ ∣I∣ = nÐ→ I ⊫< futurize n ϕ←→ ∃k. ((SNOC (0n))k I)⊫< ϕ,

8.3. Decision Procedure 91

3. wfΨ n ϕ ∧ ∣I∣ = nÐ→ I ⊫< ⌊ϕ⌋n ←→ I ⊫ ϕ, and

4. wfΨ n ϕ ∧ ∣I∣ = n ∧ #I = 0Ð→ o n ϕ←→ I ⊫ ϕ,

Prop. 1 follows by a routine induction on ϕ. Prop. 2 follows from the fact that
futurize n ϕ is the disjunction of all right derivatives of ϕ by words of the form (0n)k

for some k and the characteristic property of right derivatives. Prop. 3 is again
a routine induction using Prop. 2 in the existential quantifier cases. Finally, for

Prop. 4 we calculate: o n ϕ←→ o< ⌊ϕ⌋n
Prop. 1
←→ I ⊫< ⌊ϕ⌋n

Prop. 3
←→ I ⊫ ϕ.

8.3 Decision Procedure

We are close to being able to instantiate the generic bisimulation computation with
our notions to obtain decision procedures for WS1S and M2L. The only missing
jigsaw piece is the treatment of first-order quantification that was swept under the
carpet so far. The solution is rather straightforward: in our new syntax Ψ there are
no first-order quantifiers, but there is a base formula that asserts that a variable is
first order. Therefore, when translating formulas in the standard syntax Φ intro-
duced in Chapter 7 into our new syntax we insert additional restrictions FO x in the
appropriate places into the formula. This approach is inspired by the treatment of
the issue of first-order variables in MONA (although recent versions of MONA use
a more efficient solution than the outlined simple approach [68]). Restrictions are
inserted under each first-order quantifier by the function restr, but also globally to
annotate free first-order variables by the function restrict.

primrec restr ∶∶ Φ → Ψ where

restr (ϕ∨ψ) = restr ϕ ∨ restr ψ
restr (¬ ϕ) = ¬ restr ϕ
restr (∃1 ϕ) = ∃ (restr ϕ∧ FO 0)
restr (∃2 ϕ) = ∃ (restr ϕ)
restr ϕ = ϕ

definition restrict ∶∶ Φ → Ψ where

restrict ϕ = fold (λi ϕ. ϕ∧ FO i) (V1 ϕ) (restr ϕ)

Note that the last equation of restr uses some notation overloading for constructors
since the type of the formula ϕ does change. The key property of restrict is that it
translate between the semantics ⊧ and ⊫.

theorem LΨ n (restrict ϕ) = LΦ n ϕ
theorem LΨ

<
n (restrict ϕ) = LΦ

<
n ϕ

92 Chapter 8. Derivatives of Formulas

Finally, we are ready to instantiate our locale to obtain decision procedures for the
M2L and the WS1S semantics. As in the previous chapter the alphabet Σn denotes
the list of Boolean vectors of length n.

interpretation WS1S ∶ fin_coalgD where

Σ = Σn

i ϕ = ⟨restrict ϕ⟩
o ψ = o n ψ
d v ψ = ⟨δ v ψ⟩
Lσ ψ = LΨ n ψ
Lτ ϕ = LΦ n ϕ
wfσ ψ = wfΨ n ψ
wfτ ϕ = wfΦ n ϕ

interpretation M2L ∶ fin_coalgD where

Σ = Σn+1
i ϕ = ⟨restrict ϕ∧ FO n⟩
o ψ = o< ψ
d v ψ = ⟨δ v ψ⟩
Lσ ψ = LΨ

<
(n+ 1) ψ

Lτ ϕ = LΦ
<

n ϕ
wfσ ψ = wfΨ (n+ 1) ψ
wfτ ϕ = wfΦ n ϕ

The last point deserving an explanation is the conjunction of the fresh variable with
the index n (not occurring in n-wellformed ϕ) in the decision procedure for M2L.
This is required to circumvent the situation that a M2L formula can only be true
in the empty model if it does not quantify over first-order variables and has no
free first-order variables. Because of this ∀1 FO 0 would be different from T but
equivalent to FO 42. Conjoining a fresh first-order variable restriction essentially
means, that the first pair of a bisimulation must not be checked for acceptance.
With other words, the empty word is explicitly excluded as in Chapter 7. This
admittedly surprising workaround is required due to the unusual quantification
rules of M2L. In WS1S there is nothing special about empty models.

Example 8.1 suggests that a stronger normalization function than ⟨_⟩ might be use-
ful. For example, trivial identities involving T or F (such as T ∨ ϕ ≡ ϕ) should be
also simplified. Indeed in our tests we employ a much stronger normalization func-
tion, that additionally pushes negations inside (which requires adding universal
quantification and conjunction as primitives) and eliminates needless quantifiers
∃ ϕ ≡ ϕ provided that 0 is not free in ϕ. MONA performs a similar optimization,
which according to its user manual [69] “can cause tremendous improvements”.
However, MONA can perform this optimization only on the initially entered for-
mula, while for us it is available for every pair of formulas in the bisimulation
because we keep the rich formula structure.

This is only one of a wealth of optimizations performed in MONA. Competing with
this state-of-the-art tool is not our main objective yet. Our procedure does outper-
form MONA on specific examples, for example on formulas of the form ϕ∧ψwhere
the minimal automata for ϕ is small, the one for ψ is huge, and for almost all w ei-
ther fold δ w ϕ = F or fold δ w ψ = F. When extending the syntax with formulas of the
form x = n for constants n (and defining the left and right derivatives for them), such
examples can be immediately constructed: x = 10∧ x = 10000 takes MONA roughly
40 minutes to disproof, while our procedure requires only a few seconds. MONA
computes eagerly both minimal automata for ϕ and ψ, whereas our procedures is

8.4. Minimum Semantics Optimization 93

regular expression-based formula derivative-based
n M2L WS1S M2L WS1S
0 0 0.4 0 0
1 0 14.4 0 0.5
2 3.9 − 0.8 0.9
3 − − 1.5 1.8
4 − − 3.1 4.5

Figure 8.2: Running times (in sec) for proving ψn ≡ T

lazier, which pays off here. More generally, we can compete with and outperform
by far our own procedure based on Π-extended regular expressions.

We have evaluated the performance of our new procedure on the family of formu-
las ψn defined in Chapter 7 against the best timings obtained for M2L and WS1S
by the procedure based on Π-extended regular expressions. The encouraging re-
sults are shown in Figure 8.2. A “−” means that the computation did not terminate
within five minutes. MONA solves all those examples instantly. We should note
that the optimization ∃ ϕ ≡ ϕ provided that 0 is not free in ϕ is indeed a tremen-
dous improvement—without its usage our decision procedure scales only slightly
better than the regular expression-based one. The possibility to inspect the binder
structure after several derivative steps, which is not available when translating to
regular expressions, is the main advantage of the proposed decision procedure.

8.4 Minimum Semantics Optimization

MONA is an excellent source for ideas on how to optimize any algorithm dealing
with WMSO. Here, we consider a particular optimization which we call the min-
imum semantics of first-order variables. MONA’s manual [69] gives the following
description for this optimization.

First-order values are not encoded as singleton sets as suggested, but
as non-empty sets. The value denoted by such a set is interpreted as its
smallest number. (This encoding turns out to be slightly more efficient
than the singleton method.)

Although this is not the most effective optimization that MONA has to offer, we
chose to study it in our setting since it directly affects the coalgebraic structure
that we have defined for formulas. Indeed, implementing the optimization will
make the derivative operation simpler, at the expense of a complication of right
derivatives and therefore of the empty word (model) acceptance test. Empirically,
the gains seem to outweigh the losses.

94 Chapter 8. Derivatives of Formulas

Formally, we define the minimum semantics as follows on formulas of type Ψ. We
omit the atomic formula Z x—it will not be necessary to establish the closure under
derivatives for the minimum semantics and can therefore be safely removed from
Ψ (also since the translation restrict does not generate it as a subformula).

primrec⊫ ∶∶ interp→ Ψ → bool where
I ⊫ T = ⊺
I ⊫ F = �
I ⊫ (FO x) = I[x] /= {}
I ⊫ (x < y) = I[x] /= {} ∧ I[y] /= {} ∧ min (I[x]) < min (I[y])
I ⊫ (x ∈ X) = I[x] /= {} ∧ min (I[x]) ∈ I[X]
I ⊫ (ϕ∨ψ) = I ⊫ ϕ ∨ I ⊫ ψ

I ⊫ (¬ ϕ) = ¬(I ⊫ ϕ)
I ⊫ (∃ ϕ) = ∃P. ∣P∣ <∞ ∧ (P # I)⊫ ϕ

The function min denotes the minimal element of a non-empty finite set of numbers.

The semantics of input formulas Φ as well as the actual language definition are also
adjusted accordingly (omitted here). Clearly, this change does not influence satis-
fiability in a pure number-theoretic sense: first-order variables must be assigned
a single natural number and the change affects only the formal modeling of those
values by finite sets. (The actual word encodings of models do change.)

The effect of the minimum semantics on the derivative operation is best seen on
the formula FO x. In the standard semantics FO x is satisfied by all interpretations
that assign x a singleton set. Thus, after deriving by a letter v that has ⊺ in the row
belonging to x, we have to accept only interpretations that assign the empty set
to x, represented by the helper formula Z x. With the minimum semantics, it does
not matter what comes after the first ⊺. This is represented by the formula T. The
advantage of the minimum semantics lies in the fact that then arising subformulas
T can be eliminated, thereby simplifying the whole formula, while Z x can not be
eliminated as easily. We obtain the derivative δ for the minimum semantics simply
by replacing all occurrences of the formula Z x in the original definition with T (we
only show the constructors for which the definition of δ actually does change).

δ v (FO x) =
⎧⎪⎪⎨⎪⎪⎩

T if v[x]
FO x otherwise

δ v (x < y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x < y if ¬v[x] ∧ ¬v[y]
FO y if v[x] ∧ ¬v[y]
F otherwise

δ v (x ∈ X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x ∈ X if ¬v[x]
T if v[x] ∧ v[X]
F otherwise

8.4. Minimum Semantics Optimization 95

For right derivatives, the situation is more complex, since the interpretations do not
have the property anymore of being symmetric. In particular Ψ as defined so far is
not closed under δ—when deriving a first-order formula from the right by a ⊺, it is
not clear anymore that the derivative will cancel out the actual assigned value (that
is the first ⊺ in a row). To capture this uncertainty, we extend it with three further
base formulas: x <F y, x <T y, and x ∈T y with the following WS1S semantics (the
M2L semantics is the same, but not really relevant).

I ⊫ (x <F y) = I[x] /= {} ∧ I[y] = {} ∨ I ⊫ x < y
I ⊫ (x <T y) = I[y] = {} ∨ I ⊫ x < y
I ⊫ (x ∈T X) = I[x] = {} ∨ I ⊫ x ∈ X

In principle, x <F y, x <T y, and x ∈T X are random names for formulas denoting
“what is left” after deriving from the right. These remainders are closely related to
their non-subscripted cousins, behaving differently only if one of the sets assigned
to a first-order variable is empty. The subscript T indicates the acceptance of the
empty model.

Next, we adjust the definition of the right derivative δ. We omit the constructors for
which δis unchanged (Boolean connectives and the existential quantifier). More-
over, the M2L acceptance test o< must be lifted to the additional formulas. Al-
though we will not use the derivative δ on the new formulas, we want our previ-
ously stated theorems still to hold universally. Thus, we also extend δ accordingly.

δv (FO x) =
⎧⎪⎪⎨⎪⎪⎩

T if v[x]
FO x otherwise

δv (x < y) =
⎧⎪⎪⎨⎪⎪⎩

x < y if ¬v[y]
x <F y otherwise

δv (x <F y) =
⎧⎪⎪⎨⎪⎪⎩

x <T y if v[x] ∧ ¬v[y]
x <F y otherwise

δv (x <T y) =
⎧⎪⎪⎨⎪⎪⎩

x <T y if ¬v[y]
x <F y otherwise

δv (x ∈ X) =
⎧⎪⎪⎨⎪⎪⎩

x ∈T X if v[x] ∧ v[X]
x ∈ X otherwise

δv (x ∈T X) =
⎧⎪⎪⎨⎪⎪⎩

x ∈ X if v[x] ∧ ¬v[X]
x ∈T X otherwise

o< (x <F y) = �
o< (x <T y) = ⊺
o< (x ∈T X) = ⊺

δ v (x <F y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x <F y if ¬v[x] ∧ ¬v[y]
T if v[x] ∧ ¬v[y]
F otherwise

δ v (x <T y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x <T y if ¬v[x]∧¬v[y]
T if v[x] ∧ ¬v[y]
F otherwise

δ v (x ∈T X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x ∈T X if ¬v[x]
T if v[x] ∧ v[X]
F otherwise

All other notions required for the decision procedure remain unchanged and we
obtain two further interpretations M2L′ and WS1S′ that instantiate the parameters
in exactly the same way as M2L and WS1S (however including the above changes
to the derivative operations hidden through overloading).

96 Chapter 8. Derivatives of Formulas

∃ 1 ∈ 0
FO 0

start

∃ (T ∨ F)
T

∃ ((T ∨ F) ∨ (T ∨ F))
T

∃ (1 ∈ 0 ∨ 1 ∈ 0)
FO 0

δ (⊺)

δ (⊺)
δ (�)

⟨_⟩

δ (�)

⟨_⟩

Figure 8.3: Bisimulation for ∃ 1 ∈ 0 ≡ FO 0

The modified derivatives enjoy all the previously stated properties (with respect
to the minimum semantics). Since the modifications affect only base formulas we
have invested some effort into structuring our formal proofs in order not to repeat
large parts such as the formalization of the futurization step required by o. In the
end, we have completely separated the base formulas from the type of formulas
that then have a single constructor to capture all base formulas. The communica-
tion between those two parts is realized via a locale that abstracts over the type of
base formulas α and the implementations of all involved functions, such as ⊧,⊫, δ,
δ, and o<, on α. The decision procedure is then defined abstractly and proved cor-

rect once and for all, without knowing how the concrete base formulas look like.
The resulting locale is even more complicated, since we also want to reuse it for de-
ciding different logics (Section 8.6)—it has over 20 parameters interconnected via
50 assumptions. Due to this complexity, in this thesis we rather present the differ-
ent procedures with some redundancy. In formal proofs abstraction helps a lot to
focus on exactly what is necessary and in the end is a clear time saver.

Our new procedure for the minimum semantics outperforms the one for the stan-
dard semantics. Indication of this are already apparent when viewing Example 8.1
through the lens of the minimal semantics.

Example 8.2. The formula ϕ = ∃ 1 ∈ 0 (or ∃X. x ∈ X in conventional notation) has two
distinct derivatives modulo ACI over the alphabet Σ1 = bool 1 = [(�), (⊺)] (we again ab-
breviate fold δ w by δw).

• δ[] ϕ = ϕ ∼ ∃ (1 ∈ 0∨ 1 ∈ 0) = δ[(�)] ϕ ∼ δ(�)n ϕ for all n

• δ[(⊺)] ϕ = ∃ (T∨ F) ∼ ∃ ((T∨ F)∨ (T∨ F)) = δ[(⊺), (�)] ϕ ∼ δ((�)n@(⊺)#w) ϕ

for all w, n

Figure 8.3 shows the bisimulation induced by formula derivatives for the above formula
ϕ = ∃ 1 ∈ 0 and its equivalent ψ = FO 0 under the minimum semantics.

8.5. Case Study: MonaCo 97

standard semantics minimum semantics
n M2L WS1S M2L WS1S
0 0 0 0 0
1 0 0.5 0 0
2 0.8 0.9 0 0
3 1.5 1.8 0 0
4 3.1 4.5 0 0

10 − − 0.1 0.1
15 − − 3.4 3.5

Figure 8.4: Running times (in sec) for proving ψn ≡ T

Similarly, for our running example ψn from earlier the minimum semantics consti-
tutes an even further improvement. The results are shown in Figure 8.4. As before,
a “−” means that the computation did not terminate within five minutes.

8.5 Case Study: MonaCo

MONA benefits a lot from the BDD representation of automata [70]. Pous [96]
presents a fast symbolic decision procedure for Kleene algebra with tests (KAT)
employing BDDs whose leafs are KAT expressions and lifting derivative operations
of KAT expressions to those BDDs. The coalgebraic core of this decision procedure
is identical to the one we formalized.

A rather natural experiment is to combine our derivative operations on formulas
with the generic infrastructure, in form of a Ocaml library called safa1 [95], devel-
oped by Pous for his procedure. Together with Pous we are in the process of con-
ducting this experiment in a prototype tool that we have called MonaCo2 [97]. Un-
like anything else presented in this thesis MonaCo is unverified and implemented
in Ocaml. We report on the initial progress of this project.

Safa and BDDs Safa is a generic Ocaml library. At its core there is the module
SDFA that captures a symbolic coalgebra by two functions δ and o. From this module
safa derives an equivalence checker that constructs a bisimulation. All of this is
very similar to our locales, with the exception that Ocaml code of course does not
require the user to define a semantics and prove semantic properties about the
coalgebraic structure.

The main difference with our algorithm lies in the type of the derivative. Instan-
tiated to formulas safa expects the function δ ∶∶ Φ → Φ bdd to be supplied. A bi-
nary decision diagram (BDD) of type α bdd is a standard compact representation

1Symbolic algorithms for f inite automata
2Which is like MONA but coalgebraic.

98 Chapter 8. Derivatives of Formulas

of a function of type bool list → α as a decision tree with maximal sharing of sub-
trees and redundancy elimination.3 BDDs are implemented in Ocaml using hash-
consing [42] to guarantee maximal sharing. The safa library conveniently provides
all the necessary infrastructure for the manipulation of BDDs including an efficient
lifting of binary operators (α → α → α) → α bdd → α bdd → α bdd that is required
for computing derivatives recursively. This makes it easy to translate our explicit
derivatives into their counterpart that employ BDDs. Empirically, using BDDs for
left derivatives pays off more than using them for right derivatives. Indeed for
right derivatives the explicit version is on par with the BDD version. Our tentative
explanation for this phenomenon is that right derivatives are computed only for
letters v that have � in most of their entries, while for left derivatives always all 2∣v∣

possibilities are explored (such that sharing is potentially more often applicable).

Memoization Using BDDs helps, especially with respect to space requirements
which are dramatically reduced due to maximal sharing. However, an at least
equally important time saver (even more so in conjunction with BDDs) is mem-
oization. A function f is memoizing if it never recomputes a value f x twice for
the same x. Memoization again relies on hash-consing and is implemented by a
(per function global) hash map that caches performed computations for already en-
countered arguments. Thus, the actual computation is only performed for newly
encountered arguments and the computation’s result is stored in the hash map.

In our experiments, we found it useful to employ memoization in almost all func-
tions that perform primitive recursion on formulas: left and right derivatives δ and
δ, the M2L acceptance test o<, the insertion of restrictions for first-order variables

restr and the computation of free variables V1.

Richer Formula Language Our procedure does not guarantee to produce mini-
mal automata. Instead, we aim for a formula normalization function that is easy
to compute (complexity-wise) and produces small automata in practice. Those two
aims are contradictory—the smallest automata are produced by normalizing with
respect to language equivalence and this is the non-elementary problem we are
solving. Quite certainly, there is no optimal resolution to this discrepancy, but there
are heuristics that help. One such heuristic is to include conjunction and universal
quantification into formulas. Then, negation can be pushed inwards towards the
base formulas, leading to a negation normal form.

Another heuristic is to extend base formulas beyond the two we have considered
so far. This pays off because for base formulas, in contrast to composite formulas,
we are in control of defining minimal (derivative) automata. Indeed, MONA incor-
porates a wealth of basic formulas. Figure 8.5 shows a large subset of those, their
(minimum) semantics and derivatives. Since those syntactic derivative definitions
are rather delicate, we preferred to formally verify their characteristic properties.

3The more precise term is reduced order binary decision diagrams (ROBDD).

8.5. Case Study: MonaCo 99

ϕ ∶∶ Ψ I ⊧ ϕ δ v ϕ

x = n I[x] /= {} ∧ min (I[x]) = n

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T if n = 0 ∧ v[x]
x = n− 1 if n /= 0 ∧ ¬v[x]
F otherwise

x = y+ n
I[x] /= {} ∧ I[y] /= {} ∧
min (I[x]) = min (I[y])+ n

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

T if n = 0 ∧ v[x] ∧ v[y]
x = y+ n if ¬v[x] ∧ ¬v[y]
x = n− 1 if n /= 0 ∧ ¬v[x] ∧ v[y]
F otherwise

X = Y I[X] = I[Y]
⎧⎪⎪⎨⎪⎪⎩

X = Y if v[X]←→ v[Y]
F otherwise

X =b Y + 1
I[X] = (+1) ● I[Y] ∪
if b then {0} else {}

⎧⎪⎪⎨⎪⎪⎩

X =v[Y] Y + 1 if b = v[X]
F otherwise

X = {} I[X] = {}
⎧⎪⎪⎨⎪⎪⎩

X = {} if ¬v[X]
F otherwise

sing X sing (I[X])
⎧⎪⎪⎨⎪⎪⎩

X = {} if v[X]
sing X otherwise

X ⊆ Y I[X] ⊆ I[Y]
⎧⎪⎪⎨⎪⎪⎩

X ⊆ Y if v[X]Ð→ v[Y]
F otherwise

x = min X
I[x] /= {} ∧ I[X] /= {} ∧
min (I[x]) = min (I[X])

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T if v[x] ∧ v[X]
x = min X if ¬v[x] ∧ ¬v[X]
F otherwise

x = max X
I[x] /= {} ∧ I[X] /= {} ∧
min (I[x]) = max (I[X])

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

X = {} if v[x] ∧ v[X]
x = max X if ¬v[x]
F otherwise

X = Y ∪ Z I[X] = I[Y] ∪ I[Z]
⎧⎪⎪⎨⎪⎪⎩

X = Y ∪ Z if v[X]←→ v[Y] ∨ v[Z]
F otherwise

X = Y ∩ Z I[X] = I[Y] ∩ I[Z]
⎧⎪⎪⎨⎪⎪⎩

X = Y ∩ Z if v[X]←→ v[Y] ∧ v[Z]
F otherwise

X = Y ∖ Z I[X] = I[Y]∖ I[Z]
⎧⎪⎪⎨⎪⎪⎩

X = Y ∖ Z if v[X]←→ v[Y] ∧ ¬v[Z]
F otherwise

X ∩ Y = {} I[X] ∩ I[Y] = {}
⎧⎪⎪⎨⎪⎪⎩

F if v[X] ∧ v[Y]
X ∩ Y = {} otherwise

∑2X = n ∑i∈I[X]
2i = n

⎧⎪⎪⎨⎪⎪⎩

F if v[X]←→ (n mod 2 = 0)
∑2X = n/2 otherwise

Figure 8.5: Semantics and derivatives of extended base formulas

100 Chapter 8. Derivatives of Formulas

Things get even more delicate when defining right derivatives for the minimum
semantics as we have learned already on the two earlier base formulas x < y and
x ∈ X. There, we have introduced additional formulas to capture the remainders
after deriving. Here, we enrich the base formulas from Figure 8.5 with certain
flags that encode these additional formulas. Only the six atomic formulas below
will need such an adjustment. The added flags are superscripted after the equality
signs of the affected formulas. The flags are either of type nat option (named i) or
of type bool (named b or b′). We also redefine (or rather extend) the semantics—
the changes affect mostly cases where a first-order variable has been assigned an
empty set. The original formulas are obtained by setting i = None or b = �. Note that
we do not extend the left derivative for formulas with different flag values (such as
i = Some n or b = ⊺), since those formulas will never be derived from the left.

I ⊧ (x =i n) =
⎧⎪⎪⎨⎪⎪⎩

min (I[x]) = n if I[x] /= {}
i = Some 0 otherwise

I ⊧ (x =i y+ n) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min (I[x]) = min (I[y])+ n if I[x] /= {} ∧ I[y] /= {}
i = Some 0 if I[x] = {} ∧ I[y] = {}
#I = min (I[y])+ the i if I[x] = {} ∧ I[y] /= {} ∧ i /= None ∧ i /= Some 0
� otherwise

I ⊧ (X =b′
b Y + 1) =

I[X] ∪ if b′ then {#I} else {} = (+1) ● I[Y] ∪ if b then {0} else {}

I ⊧ (x =b min X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min (I[x]) = min (I[X]) if I[x] /= {} ∧ I[X] /= {}
b if I[x] = {} ∧ I[X] = {}
� otherwise

I ⊧ (x =b max X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min (I[x]) = max (I[X]) ∧ ¬b if I[x] /= {} ∧ I[X] /= {}
b if I[x] = {}
� otherwise

I ⊧ (∑2X =i n) = ∑i∈I[X]
2i = n ∧ (case i of Some k⇒ #I = k ∣ _⇒ ⊺)

Figure 8.6 defines the M2L empty model acceptance test o< and the right derivatives
for the extended formulas. We have also verified the expected properties of those
operations. The function ld x computes the binary logarithm of x ∶∶ nat, that is the
largest m ∶∶ nat such that 2m ≤ x. In the figure, we use the following abbreviations.

i −̂ 1 = case i of Some (n+ 1)⇒ Some n ∣ _⇒ None
▵ = None
⌈x⌉ = Some x
▲ = one of {∪,∩,∖}
△ = one of {∧,∨,λb b′. b ∧ ¬b′} fitting the choice of ▲

8.5. Case Study: MonaCo 101

ϕ ∶∶ Ψ o< ϕ δv ϕ

x =i n i = ⌈0⌉
⎧⎪⎪⎨⎪⎪⎩

x =⌈n⌉ n if v[x]
x =i−̂1 n otherwise

x =i y+ n i = ⌈0⌉

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x =i y+ n if n = 0 ∧ ¬v[x] ∧ ¬v[y]
x =▵ y+ n if n = 0 ∧ (v[x]←→ v[y]) ∨

n /= 0 ∧ ¬v[x] ∧ ¬v[y] ∧ i = ⌈1⌉
x =⌈0⌉ y+ n if n = 0 ∧ v[x] ∧ v[y] ∨

n /= 0 ∧ ¬v[x] ∧ ¬v[y] ∧ i = ⌈0⌉
x =⌈n⌉ y+ n if n /= 0 ∧ v[x]
x =i−̂1 y+ n otherwise

X = Y ⊺
⎧⎪⎪⎨⎪⎪⎩

X = Y if v[X]←→ v[Y]
F otherwise

X =b′
b Y + 1 b = b′

⎧⎪⎪⎨⎪⎪⎩

X =v[X]

b Y + 1 if b′ = v[Y]
F otherwise

X = {} ⊺
⎧⎪⎪⎨⎪⎪⎩

X = {} if ¬v[X]
F otherwise

sing X �
⎧⎪⎪⎨⎪⎪⎩

X = {} if v[X]
sing X otherwise

X ⊆ Y ⊺
⎧⎪⎪⎨⎪⎪⎩

X ⊆ Y if v[X]Ð→ v[Y]
F otherwise

x =b min X b

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x =⊺ min X if v[x] ∧ v[X]
x =b min X if ¬v[x] ∧ ¬v[X]
x =� min X otherwise

x =b max X b

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

� if (b ∧ v[x]) ∨ (¬b ∧ ¬v[x] ∧ v[X])
x =b max X if ¬v[x] ∧ ¬v[X]
x =v[X] max X otherwise

X = Y ▲ Z ⊺
⎧⎪⎪⎨⎪⎪⎩

X = Y ▲ Z if v[X]←→ v[Y]△ v[Z]
F otherwise

X ∩ Y = {} ⊺
⎧⎪⎪⎨⎪⎪⎩

F if v[X] ∧ v[Y]
X ∩ Y = {} otherwise

∑2X =i n
n = 0 ∧
(i = ▵ ∨
i = ⌈0⌉)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑2X =⌈ld n⌉ n− 2ld n if i = ▵ ∧ v[X] ∧ n /= 0

∑2X =i n if i = ▵ ∧ ¬v[X]
∑2X =i−̂1 n− 2the i−1 if i /= ▵ ∧ i /= ⌈0⌉ ∧ v[X] ∧ n ≥ 2the i−1

∑2X =i−̂1 n if i /= ▵ ∧ i /= ⌈0⌉ ∧ ¬v[X] ∧ n < 2the i−1

� otherwise

Figure 8.6: Acceptance test and right derivatives of extended base formulas

102 Chapter 8. Derivatives of Formulas

The functions δ, δ, and o< are the core ingredients that are needed for using ad-
ditional formulas in MonaCo (also in our verified procedure). Therefore, both
MonaCo and the formalization, are easily extensible with additional base formulas.

Evaluation MonaCo is not a finished project. Nevertheless, from day one effi-
ciency considerations were guiding its design and were the main reason for giving
up the cosy verified environment of a proof assistant.

MonaCo can show that previously considered formulas ψn are equivalent to T
within less than one second for n ≤ 200. The fastest verified decision procedure
can only achieve this for n ≤ 10. With MONA it is possible to get even further.

Another benchmark is proving commutativity of the specification of an adder [10].
While the verified procedures have never managed to prove this one within hours,
MonaCo requires 0.05 seconds, which is about the same as MONA needs.

We have already mentioned that the derivative based approach can outperform
MONA by far on formulas such as x = 10∧ x = 10000. Indeed, for MONA it takes
roughly 40 minutes for proving this example being equivalent to F, while MonaCo
gives an instant answer.

Finally, we consider four families of benchmarks (a)–(d) proposed by D’Antoni
and Veanes [37]. On the benchmark (a), which states that there exist n different
(ordered by <) natural numbers for increasing n, MonaCo outperforms MONA and
even the customized tool presented by D’Antoni and Veanes. On the other three
benchmarks MonaCo’s performance is less convincing.

Future Work We outline the next steps for further improvements of MonaCo.

Our algorithm constructs a bisimulation. It is well known that a bisimulation up to
congruence and context is often much smaller. Bonchi and Pous [21] successfully
employ this technique in practice, outperforming state-of-the-art solvers for NFA
equivalence. Bonchi and Pous [21] showed that bisimulation up to congruence
and context is an even further improvement over the antichain technique for non-
deterministic automata. Either of these techniques will improve the performance of
our algorithm (extended to work non-deterministically using partial derivatives) at
least for some classes of formulas. Further refinements of the congruence closure,
such as congruence modulo integer offsets [86] used in SMT solvers, also bear some
potential for improvement. (A more radical measure would be trying to connect
MonaCo with an SMT solver directly.)

An alternative to conjoining formulas FO 0 to every first-order quantifier, which
turned out to be more efficient in MONA, is to work with a three-values seman-
tics [68] of acceptance (where the third value indicates that no ⊺ for a first-order
variable has been read yet). In our setting, this would require a change of the
underlying final coalgebra (essentially working with Moore machines rather than

8.6. Case Study: Presburger Arithmetic 103

with DFAs), and therefore a complication of the syntactic coalgebra. It is not clear
whether this complication will pay off in our setting.

Finally, as most research tools, MonaCo desperately needs a proper, carefully de-
signed benchmark suite that ideally will include easy problems, difficult prob-
lems, random problems, and real-world problems. For WS1S such a benchmark
suite does not exist today to our knowledge. The design of such a suite is time-
consuming effort but should prove rewarding for the whole community.

8.6 Case Study: Presburger Arithmetic

To conclude our study of formula derivatives in this thesis we want to explore their
applicability to different logics than WMSO. A natural candidate for this endeavor
is Presburger arithmetic (PA)—a decidable first-order logic with built-in addition
but without multiplication. Below we define this logic formally. For a deeper in-
troduction we refer to the presentation of PA by Boudet and Comon [23], which
explores the logic-automaton connection for PA and has also served as a role model
for us when devising the derivatives of PA formulas presented below. There also
exists an automaton-based formalization of Boudet and Comon’s decision proce-
dure for PA in Isabelle/HOL [13].

Note that, as usual, our primary goal is not efficiency. As for WMSO, the deriva-
tives of PA formulas do not yield minimal automata. Hence, we do not expect out
procedure to have the optimal doubly exponential complexity [66].

PA formulas are defined inductively by the following datatype.

datatype Φ = T ∣ F ∣ Eqint (int list) int ∣ Φ ∨Φ ∣ ¬ Φ ∣ ∃ Φ

Only the base formula Eq∆ cs x deserves an explanation. It represents a Diophan-
tine equation1 with integer coefficients cs over ∣cs∣ natural variables x0, . . ., x∣cs∣. The
list of values xs ∶∶ nat list assigned to those variables constitutes an interpretation.
The formula’s semantics ⊧ requires the scalar product xs ⋅ cs = ∑∣v∣

i xs[i] ⋅ cs[i] of the
interpretation xs and the coefficients cs to be equal to the given integer x. A further
parameter ∆ is an additional flag (in the spirit of the various flags from the previous
section) that will be useful for right derivatives. In input formulas—the only ones
that will be derived by δ—we require ∆ = 0. We omit the equations for formulas
different from Eq∆ cs x in the definition of ⊧ (and other forthcoming operations),
since they are defined exactly in the same way as for WMSO.

xs ⊧ Eq∆ cs x = (xs ⋅ cs = x−∆ ⋅ 2#xs)

1Boudet and Comon also include inequalities which we for simplicity leave out.

104 Chapter 8. Derivatives of Formulas

Formally, ∆ connects the Diophantine equation with the intrinsic value #xs of the
interpretation xs, that as for WMSO denotes the length of the interpretation’s en-
coding as a formal word. This standard encoding translates the natural numbers in
the interpretation xs into their binary representation of type bool list (the least sig-
nificant bit comes first). Similarly to WMSO, the resulting list of lists of Booleans is
then transposed and padded with � to have the length #xs to obtain a formal word
over the alphabet of Boolean vectors of length ∣xs∣—each row corresponding to one
variable. For example, for xs = [4, 7, 1] with #cs = 4 we obtain the following formal
word in which the original values can be reconstructed by reading rows in binary.

wxs =
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

�
⊺
⊺

⎞
⎟
⎠

,
⎛
⎜
⎝

�
⊺
�

⎞
⎟
⎠

,
⎛
⎜
⎝

⊺
⊺
�

⎞
⎟
⎠

,
⎛
⎜
⎝

�
�
�

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦

The PA language is then unsurprisingly defined as LΦ n ϕ = {wxs ∣ xs ⊧ ϕ ∧ ∣xs∣ =
n}. Note that PA also admits a bounded semantics (corresponding to M2L) which
appears not to have been studied in the literature. Our formalization proves that it
is decidable. As future work, it would be interesting to investigate its complexity
properties and usefulness.

For input formulas we define the derivative of the base formula (with ∆ restricted
to 0) as follows. The definition is rather intuitive—it generates the Diophantine
equation whose solutions (that is satisfying interpretations) are the solutions xs of
the input equation after losing their least significant bit. The construction of the
base automaton by Boudet and Comon is very similar.

δ v (Eq0 cs x) = let y = x− v ⋅ cs in if y mod 2 = 0 then Eq0 cs (y/2) else F

Boudet and Comon prove that the values that the last argument y of all word
derivatives of Eq0 cs x that are different from F can take are bounded as follows: ∣y∣ ≤
max x (∑[∣c∣ ∣ c← cs]). This immediately implies that the number of word deriva-
tives of Eq0 cs x is finite. For the whole type Φ the number of derivatives is finite
only when considering derivatives modulo ACI, as always. In our formal proof we
tighten the bound to min x (−∑[c ∣ c← cs, c > 0]) ≤ y ≤ max x (−∑[c ∣ c← cs, c < 0]).

As for WMSO, the characteristic property of derivatives is best expressed via the
operator CONS, for which we have w(CONS v xs) = v # wxs assuming ∣v∣ = ∣xs∣.

fun CONS ∶∶ bool list→ nat list→ nat list where
CONS [] [] = []
CONS (⊺ # v) (x # xs) = (2 ⋅ x+ 1) # CONS v I
CONS (� # v) (x # xs) = (2 ⋅ x) # CONS v I

8.6. Case Study: Presburger Arithmetic 105

Additionally, we require #(CONS v I) = #I + 1. The derivatives of n-wellformed
formulas (defined for the new base case by wfΦ n (Eq∆ cs x) = (∣cs∣ = n)) are then
characterized by the following property which follows by induction.

theorem wfΦ n ϕ ∧ ∣xs∣ = ∣v∣ = nÐ→ xs ⊧ δ v ϕ←→ CONS v xs ⊧ ϕ

As for right derivatives, we need to generate solutions that are the solutions of the
input equations after losing their most significant bit. A sound way for doing so
is given by the following formula. Here, we see how the parameter ∆ is used to
accumulate what we have already derived (from the right).

δv (Eq∆ cs x) = Eqv⋅cs+2∗∆ cs x

Unfortunately, when using this definition the parameter ∆ can grow arbitrarily
large (for example by repeatedly deriving by a vector v = 1 # 0∣vcs∣−1, assuming
that cs = x # xs with x > 0). However, to obtain a finite number of right derivatives,
it is sound to restrict ∆’s growth by the same bounds that we have used to prove
finiteness of left derivatives. For values of ∆ outside of these bounds there is no
interpretation xs that would satisfy the formula, hence the latter is equivalent to F
in that case.

δv (Eq∆ cs x) = let Γ = v ⋅ cs+ 2 ∗∆ in

if min x (−∑[c ∣ c← cs, c > 0]) ≤ Γ ≤ max x (−∑[c ∣ c← cs, c < 0])
then EqΓ cs x
else F

The right derivatives of PA formulas also satisfy a characteristic property in terms
of a SNOC operation on interpretations (for the bounded semantics only) which we
omit here. The empty model acceptance test o combines the right derivatives with
the empty model acceptance of the bounded semantics o< in the same way as for
WMSO. The predicate o< is defined as follows.

o< (Eq∆ cs x) = (x = ∆)

This definition merely asserts that for #xs = 0 the solutions of the Diophantine equa-
tion xs ⋅ cs = x−∆ ⋅ 2#xs only include the solution xs = 0∣cs∣ if the right hand side of the
equation is equal to 0.

We obtain the interpretation of our locale for Presburger arithmetic where Σn is the
list of Boolean vectors of length n and ⟨_⟩ is the usual ACI normalization function.

106 Chapter 8. Derivatives of Formulas

interpretation PA ∶ fin_coalgD where

Σ = Σn

i ϕ = ⟨ϕ⟩
o ϕ = o n ϕ
d v ϕ = ⟨δ v ϕ⟩
Lσ ϕ = Lτ ϕ = LΦ n ϕ
wfσ ϕ = wfτ ϕ = wfΦ n ϕ

Using the decision procedure that is generated by this interpretation we can decide
the famous coin problem: all amounts greater than 8 can be obtained using only coins
of value 3 and 5. Formally, this corresponds to the formula ∀x. ∃y z. 5 ⋅ z+3 ⋅ y− x = 8,
which we can write in our syntax as ∀∃ ∃ Eq0 [5, 3,−1] 8 and prove equivalent to T.

Finally, let us for a change instantiate our fin_coalgsD locale with two different coal-
gebras. Here, we chose the coalgebras for WS1S and PA and thereby compare for-
mulas of WS1S with formulas of PA.

interpretation WS1S_PA ∶ fin_coalgsD where

A = WS1S
B = PA
v▽ v′ = (v = v′)

Note that second-order variables in WS1S can be basically seen as binary encod-
ings of natural numbers and thus correspond to Presburger variables. The inter-
pretation WS1S_PA defines a procedure that for example can prove that the for-
mulas ϕ = ∑20 = 42∧∑21 = 43 (in common syntax ∑i∈X 2i = 42∧∑i∈Y 2i = 43) and
ψ = Eq0 [1, 0] 42∧Eq0 [0, 1] 43 (in common syntax 1 ⋅ x+ 0 ⋅ y = 42∧ 0 ⋅ x+ 1 ⋅ y = 43)
denote the same regular language, namely the following set.

{(�⊺) # (⊺⊺) # (��) # (⊺⊺) # (��) # (⊺⊺) # (��)
n

∣ n ∶∶ nat}

The rows of all words in this set are binary encodings of 42 and 43, respectively.
Note that the exponents in the WS1S formula ϕ are actually de Bruijn indices.

By the way, in case you’d like to know: yes, it can be proved
that if it can be proved that it can’t be proved that two plus
two is five, then it can be proved that two plus two is five.

— George Boolos (1994)

Chapter 9

Conclusion

We hope to have convinced the reader that Conway was right: being able to com-
pute derivatives is “a skill worth acquiring” [34, p. 43].

9.1 Results

We have presented a framework for deciding equivalence of regular languages,
which we have formalized in Isabelle/HOL. The framework is based on the coal-
gebraic view on formal languages; essentially it computes a bisimulation relation
by moving forward via an abstract derivative operation and checks each pair in the
bisimulation for consistent acceptance of the empty word.

The framework may be simple, but it constitutes a powerful abstraction layer: we
have presented twenty instantiations of the framework summarized in Figure 9.1.
Each instantiation yields an executable decision procedure of the symbolic repre-
sentations of regular languages listed in the second column. All procedures in-
stantiate the abstract derivative operation of the framework with a combination
of a concrete derivative operation and a normalization function that ensures that
the number of all word derivatives for an input is finite. These choices uniquely
characterize the instantiation, which we note down in the third and fourth column.
The procedures that use ⟨⟨_⟩⟩ or ⟨⟨⟨_⟩⟩⟩ as the normalization are proved to be partially
correct, all others—totally correct.

Concerning the equivalence of regular expressions, we have shown that all the pre-
viously published verified decision procedures that work directly with expressions
can be obtained as instances of our framework. The unified presentation caters
for a meaningful comparison of the performance of the various instances. Marked
regular expressions are superior on average but partial derivatives can outperform
them in specific cases.

For each of the two semantics of weak monadic-second order logic (WMSO), WS1S
and M2L, we have presented two kinds of procedures. The first kind translates

107

108 Chapter 9. Conclusion

Equivalence of Derivative Normalization Chapter
D∼ regular expressions Brzozowski derivatives [_]∼ 5.1.1
D regular expressions Brzozowski derivatives ⟨_⟩ 5.1.1
N regular expressions Brzozowski derivatives ⟨⟨_⟩⟩ 5.1.1
P regular expressions Partial derivatives − 5.1.2
PD regular expressions Brzozowski derivatives ⟨⟨⟨_⟩⟩⟩ 5.1.2
A regular expressions mark after atom − 5.2.1

A2 regular expressions
mark after atom
(caching)

− 5.2.1

B regular expressions mark before atom − 5.2.2

B2 regular expressions
mark before atom
(caching)

− 5.2.2

DΠ
Π-extended
regular expressions

Π-extended
Brzozowski derivatives

⟨_⟩ 6.2

PΠ
Π-extended
regular expressions

Π-extended
Brzozowski derivatives

⟨⟨⟨_⟩⟩⟩ 6.4

M2LD
Π M2L formulas

Π-extended
Brzozowski derivatives

⟨_⟩ 7.3

M2LP
Π M2L formulas

Π-extended
Brzozowski derivatives

⟨⟨⟨_⟩⟩⟩ 7.3

WS1SD
Π WS1S formulas

Π-extended
Brzozowski derivatives

⟨_⟩ 7.3

WS1SP
Π WS1S formulas

Π-extended
Brzozowski derivatives

⟨⟨⟨_⟩⟩⟩ 7.3

M2L M2L formulas formula derivatives ⟨_⟩ 8.3
WS1S WS1S formulas formula derivatives ⟨_⟩ 8.3

M2L′
M2L formulas
(extended base)

formula derivatives
(minimum semantics)

⟨_⟩ 8.4 &
8.5

WS1S′
WS1S formulas
(extended base)

formula derivatives
(minimum semantics)

⟨_⟩ 8.4 &
8.5

PA PA formulas PA formula derivatives ⟨_⟩ 8.6

Figure 9.1: Formalized decision procedures

9.2. Future Work 109

logical formulas into regular expressions extended with an additional constructor
that models the existential quantifier; the second derives formulas directly. While
for M2L the empty word acceptance check is as easy to define as for regular ex-
pressions, WS1S requires more work to cancel trailing zeros, which do not affect
satisfiability, via right derivatives. Furthermore, we have considered a variation of
the encoding of first-order variables that improves on efficiency and explored the
usage of derivatives for different logics on the example of Presburger arithmetic.

For empirical experiments with formulas we have used a stronger normalization
function than the one given in the figure. The used normalization additionally
simplifies Boolean subexpressions and removes needless quantifiers. (In principle
this yields even further instantiations of our framework that we have not shown
because they do not differ fundamentally from M2L, WS1S, and PA.)

On the one hand, the obtained verified decision procedures for WMSO can be con-
sidered elegant toys—implementable only with a few hundred lines of Standard
ML (and thus well-suited for formalization) and teachable in class. At this stage,
our intention is not to compete with MONA—the state-of-the-art tool for WS1S—
which employs thousands of lines of tricky performance optimizations (but still
can be outperformed by our procedures on well selected formulas).

On the other hand, being able to safely decide small formulas is already of some
value. As an experiment, we randomly generated small formulas and compared
the outcome of our verified algorithm with the results produced by MONA and
two other (less mature) tools: Toss [46] and dWiNA [41]. As the result, we were
able to point the developers of the latter two tools to corner cases where their tools
gave a wrong answer [108, 109]. Admittedly, one could have performed the same
test without a formalized decision procedure, but then in case of a discrepancy,
determining who is right might be difficult with random formulas.

Our unverified but optimized MonaCo tool has stronger ambitions with respect
to a performance comparison with MONA. Despite promising initial benchmarks,
the tool is in its early days and will take some time to mature.

9.2 Future Work

Here we suggest follow-up projects that are interesting to work on in the future.

Normalization It is slightly disappointing that using a stronger normalization
function ⟨⟨_⟩⟩, that identifies strictly more expressions than the ACI normalization
⟨_⟩, might lead to non-termination of the algorithm when the normalization is in-
terspersed with derivatives rather than performed only at the comparison time. On
the other hand interspersing the derivatives with the normalization is reasonable
in practice. It is interesting to investigate what general (and easy to prove) criteria
a normalization function must satisfy in order to guarantee termination.

110 Chapter 9. Conclusion

A natural criterion would be to require that ⟨⟨δ a ⟨⟨r⟩⟩⟩⟩ = ⟨⟨δ a r⟩⟩ holds. Then it does
not matter whether the normalization is performed interspersed with derivatives
or at the end (additionally assuming that ⟨⟨_⟩⟩ is idempotent). However, it is not
clear to us whether the normalizations employed in our procedures satisfy this
rather strong property. Indeed, we can relax it by requiring a quasi-order ⪯, that is a
reflexive and transitive relation, on the structures under consideration (for example
regular expressions), that fulfills the following properties.

∀r. finite {s ∣ s ⪯ r}
∀r. ⟨⟨r⟩⟩ ⪯ ⟨r⟩
∀a r s. r ⪯ sÐ→ ⟨δ a r⟩ ⪯ ⟨δ a s⟩

Although the existence of such a relation ⪯ guarantees termination when inter-
spersing the normalization ⟨⟨_⟩⟩ with derivatives, it is still not clear to us what rela-
tions satisfy the required properties for our different normalizations.

ω-regular languages Since S1S, in which second-order variables quantify over
potentially infinite sets of numbers, is also decidable, the question naturally arises
whether our ideas are applicable there as well. Some hope for the affirmative an-
swer can be drawn from the work of Esparza and Křetínský [40, 78], who employ
something similar to “derivatives of LTL formulas” (but in conjunction with a non-
standard automaton model) for model checking. Furthermore, Ciancia and Ven-
ema [32] recast a more standard automaton model on infinite words into the coal-
gebraic setting.

The same question applies to ω-regular expressions. Here the situation is almost
clear thanks to Ciancia and Venema’s exposition. To decide equivalence of ω-
regular expressions we would proceed to construct a bisimulation via derivatives
(which easily generalize to ω-regular expressions). However for each pair of ex-
pressions in the bisimulation, instead of checking the consistent acceptance of the
empty word, we would actually check equivalence of two regular languages (po-
tentially reusing procedures developed in this thesis) that must be computed from
the expressions. This computation is the only missing piece: given an ω-regular
expression r, find a regular expression Loop r that denotes the loop-language, that
is satisfies L (Loop r) = {v ∣ vω ∈ L r}. Ciancia and Venema show that the loop-
language of an ω-regular expression is indeed regular and how to compute a finite
automaton accepting it from a given Muller automaton. However, starting from an
ω-regular expressions the computation seems to be more contrived.

Regular tree languages Besides WS1S, MONA, as well as dWiNA and Toss, im-
plements a decision procedure for WS2S—a logic over regular trees. An interesting
project would be devising derivatives of WS2S formulas.

9.2. Future Work 111

Again the starting point of this endeavor would be to understand the derivative
operations on regular tree expressions [33] first. In joint (unpublished) work with
Peter Lammich, we have formally defined derivatives that decompose such ex-
pressions in a top-down fashion. While this is enough for matching, equivalence
of regular tree expressions can not be decided via top-down derivatives—the core
of the problem is that non-deterministic top-down tree automata are strictly more
expressive than the deterministic ones. However, for bottom-up automata deter-
minism is not a limitation. Therefore, we are currently investigating a derivative
operation that works in a bottom-up fashion.

More speculatively, it would be interesting to study ω-regular tree languages, the
associated logic S2S, which is also decidable [98], and its derivatives.

Bibliography

[1] M. Adams. Introducing HOL Zero (extended abstract). In K. Fukuda,
J. van der Hoeven, M. Joswig, and N. Takayama, editors, ICMS ’10, volume
6327 of LNCS, pages 142–143. Springer, 2010.

[2] V. Antimirov. Partial derivatives of regular expressions and finite automata
constructions. In E. W. Mayr and C. Puech, editors, STACS 95, volume 900 of
LNCS, pages 455–466. Springer, 1995.

[3] V. Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci., 155(2):291–319, 1996.

[4] R. D. Arthan. Some mathematical case studies in ProofPower–HOL. In
K. Slind, editor, TPHOLs 2004 (Emerging Trends), pages 1–16, 2004.

[5] A. Asperti. A compact proof of decidability for regular expression equiva-
lence. In L. Beringer and A. Felty, editors, ITP 2012, volume 7406 of LNCS,
pages 283–298. Springer, 2012.

[6] A. Asperti, C. S. Coen, and E. Tassi. Regular expressions, au point. CoRR,
abs/1010.2604, 2010.

[7] A. Ayari and D. Basin. Bounded model construction for monadic second-
order logics. In E. A. Emerson and A. P. Sistla, editors, CAV 2000, volume
1855 of LNCS, pages 99–112. Springer, 2000.

[8] C. Ballarin. Interpretation of locales in Isabelle: Theories and proof contexts.
In J. M. Borwein and W. M. Farmer, editors, MKM 2006, volume 4108 of
LNCS, pages 31–43. Springer, 2006.

[9] J. Barwise and L. Moss. Vicious Circles: On the Mathematics of Non-Wellfounded
Phenomena. Cambridge University Press, 1996.

[10] D. Basin and S. Friedrich. Combining WS1S and HOL. In D. Gabbay and
M. de Rijke, editors, Frontiers of Combining Systems 2, volume 7 of Studies in
Logic and Computation, pages 39–56. Research Studies Press/Wiley, 2000.

113

114 Bibliography

[11] D. Basin and N. Klarlund. Automata based symbolic reasoning in hardware
verification. Formal Methods In System Design, 13:255–288, 1998. Extended
version of: “Hardware verification using monadic second-order logic,” CAV
’95, LNCS 939.

[12] K. Baukus, S. Bensalem, Y. Lakhnech, and K. Stahl. Abstracting WS1S sys-
tems to verify parameterized networks. In S. Graf and M. I. Schwartzbach,
editors, TACAS 2000, volume 1785 of LNCS, pages 188–203. Springer, 2000.

[13] S. Berghofer and M. Reiter. Formalizing the logic-automaton connection. In
S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors, TPHOLs 2009,
volume 5674 of LNCS, pages 147–163. Springer, 2009.

[14] J. C. Blanchette, J. Hölzl, A. Lochbihler, L. Panny, A. Popescu, and D. Traytel.
Truly modular (co)datatypes for Isabelle/HOL. In G. Klein and R. Gamboa,
editors, ITP 2014, volume 8558 of LNCS, pages 93–110. Springer, 2014.

[15] J. C. Blanchette and A. Popescu. Mechanizing the metatheory of sledgeham-
mer. In P. Fontaine, C. Ringeissen, and R. A. Schmidt, editors, FroCoS 2013,
volume 8152 of LNCS, pages 245–260. Springer, 2013.

[16] J. C. Blanchette, A. Popescu, and D. Traytel. Cardinals in Isabelle/HOL. In
G. Klein and R. Gamboa, editors, ITP 2014, volume 8558 of LNCS, pages 111–
127. Springer, 2014.

[17] J. C. Blanchette, A. Popescu, and D. Traytel. Foundational extensible corecur-
sion. In J. Reppy, editor, ICFP 2015, pages 192–204. ACM, 2015.

[18] J. C. Blanchette, A. Popescu, and D. Traytel. Witnessing (co)datatypes. In
J. Vitek, editor, ESOP 2015, volume 9032 of LNCS, pages 359–382. Springer,
2015.

[19] F. Bonchi, M. M. Bonsangue, J. J. M. M. Rutten, and A. Silva. Brzozowski’s
algorithm (co)algebraically. In R. L. Constable and A. Silva, editors, Logic and
Program Semantics - Essays Dedicated to Dexter Kozen on the Occasion of His 60th
Birthday, volume 7230 of LNCS, pages 12–23. Springer, 2012.

[20] F. Bonchi, G. Caltais, D. Pous, and A. Silva. Brzozowski’s and up-to algo-
rithms for must testing. In C. Shan, editor, APLAS 2013, volume 8301 of
LNCS, pages 1–16. Springer, 2013.

[21] F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations up
to congruence. In R. Giacobazzi and R. Cousot, editors, POPL 2013, pages
457–468. ACM, 2013.

[22] M. M. Bonsangue, J. J. M. M. Rutten, and A. Silva. A Kleene theorem for
polynomial coalgebras. In L. de Alfaro, editor, FoSSaCS 2009, volume 5504 of
LNCS, pages 122–136. Springer, 2009.

115

[23] A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic and
finite automata. In H. Kirchner, editor, CAAP 1996, volume 1059 of LNCS,
pages 30–43. Springer, 1996.

[24] T. Braibant and D. Pous. An efficient Coq tactic for deciding Kleene algebras.
In M. Kaufmann and L. Paulson, editors, ITP 2010, volume 6172 of LNCS,
pages 163–178. Springer, 2010.

[25] J. A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494,
1964.

[26] J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik
und Grundl. Math., 6:66–92, 1960.

[27] L. Bulwahn. The new Quickcheck for Isabelle: Random, exhaustive and sym-
bolic testing under one roof. In C. Hawblitzel and D. Miller, editors, CPP
2012, volume 7679 of LNCS, pages 92–108. Springer, 2012.

[28] P. Caron, J. Champarnaud, and L. Mignot. A general framework for the
derivation of regular expressions. RAIRO - Theor. Inf. and Applic., 48(3):281–
305, 2014.

[29] P. Caron, J.-M. Champarnaud, and L. Mignot. Partial derivatives of an ex-
tended regular expression. In A.-H. Dediu, S. Inenaga, and C. Martín-Vide,
editors, LATA 2011, volume 6638 of LNCS, pages 179–191. Springer, 2011.

[30] A. Chlipala. Certified Programming with Dependent Types - A Pragmatic Intro-
duction to the Coq Proof Assistant. MIT Press, 2013.

[31] A. Church. A formulation of the simple theory of types. J. Symb. Logic,
5(2):56–68, 1940.

[32] V. Ciancia and Y. Venema. Stream automata are coalgebras. In D. Pattinson
and L. Schröder, editors, CMCS 2012, volume 7399 of LNCS, pages 90–108.
Springer, 2012.

[33] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree automata techniques and applications. Avail-
able on: http://www.grappa.univ-lille3.fr/tata, 2007. release October,
12th 2007.

[34] J. Conway. Regular Algebra and Finite Machines. Chapman and Hall mathe-
matics series. Dover Publications, Incorporated, 2012.

[35] T. Coquand and V. Siles. A decision procedure for regular expression equiv-
alence in type theory. In J.-P. Jouannaud and Z. Shao, editors, CPP 2011,
volume 7086 of LNCS, pages 119–134. Springer, 2011.

http://www.grappa.univ-lille3.fr/tata

116 Bibliography

[36] N. A. Danielsson. Total parser combinators. In P. Hudak and S. Weirich,
editors, ICFP 2010, pages 285–296. ACM, 2010.

[37] L. D’Antoni and M. Veanes. Minimization of symbolic automata. In S. Jagan-
nathan and P. Sewell, editors, POPL 2014, pages 541–554. ACM, 2014.

[38] J. Elgaard, N. Klarlund, and A. Møller. MONA 1.x: new techniques for WS1S
and WS2S. In A. J. Hu and M. Y. Vardi, editors, CAV 1998, volume 1427 of
LNCS, pages 516–520. Springer, 1998.

[39] C. C. Elgot. Decision problems of finite automata design and related arith-
metics. Trans. Amer. Math. Soc., 98:21–51, 1961.

[40] J. Esparza and J. Křetínský. From LTL to deterministic automata: A Safraless
compositional approach. In A. Biere and R. Bloem, editors, CAV 2014, volume
8559 of LNCS, pages 192–208. Springer, 2014.

[41] T. Fiedor, L. Holík, O. Lengál, and T. Vojnar. Nested antichains for WS1S. In
C. Baier and C. Tinelli, editors, TACAS 2015, LNCS. Springer, 2015. to appear.

[42] J. Filliâtre and S. Conchon. Type-safe modular hash-consing. In A. Kennedy
and F. Pottier, editors, ACM Workshop on ML, pages 12–19. ACM, 2006.

[43] S. Fischer, F. Huch, and T. Wilke. A play on regular expressions: functional
pearl. In P. Hudak and S. Weirich, editors, ICFP 2010, pages 357–368. ACM,
2010.

[44] N. Foster, D. Kozen, M. Milano, A. Silva, and L. Thompson. A coalgebraic
decision procedure for NetKAT. In D. Walker, editor, POPL 2015, pages 343–
355. ACM, 2015.

[45] T. Ganzow. Definability and Model Checking: The Role of Orders and Composi-
tionality. PhD thesis, RWTH Aachen University, 2012.

[46] T. Ganzow and L. Kaiser. New algorithm for weak monadic second-order
logic on inductive structures. In A. Dawar and H. Veith, editors, CSL 2010,
volume 6247 of LNCS, pages 366–380. Springer, 2010.

[47] W. Gelade and F. Neven. Succinctness of the complement and intersection of
regular expressions. ACM Trans. Comput. Log., 13(1):4:1–19, 2012.

[48] E. Giménez and P. Castéran. A tutorial on [co-]inductive types in Coq. http:
//www.labri.fr/perso/casteran/RecTutorial.pdf, 1998.

[49] A. Ginzburg. A procedure for checking equality of regular expressions. J.
ACM, 14(2):355–362, 1967.

[50] V. M. Glushkov. The abstract theory of automata. Russian Math. Surveys,
16:1–53, 1961.

http://www.labri.fr/perso/casteran/RecTutorial.pdf
http://www.labri.fr/perso/casteran/RecTutorial.pdf

117

[51] M. Gordon. From LCF to HOL: a short history. In G. D. Plotkin, C. Stirling,
and M. Tofte, editors, Proof, Language, and Interaction, Essays in Honour of Robin
Milner, pages 169–186. The MIT Press, 2000.

[52] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theo-
rem Proving Environment for Higher Order Logic. Cambridge University Press,
1993.

[53] F. Haftmann, A. Krauss, O. Kunčar, and T. Nipkow. Data refinement in Isa-
belle/HOL. In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, ITP
2013, volume 7998 of LNCS, pages 100–115. Springer, 2013.

[54] F. Haftmann and T. Nipkow. Code generation via higher-order rewrite sys-
tems. In M. Blume, N. Kobayashi, and G. Vidal, editors, FLOPS 2010, volume
6009 of LNCS, pages 103–117. Springer, 2010.

[55] J. Hamza, B. Jobstmann, and V. Kuncak. Synthesis for regular specifications
over unbounded domains. In R. Bloem and N. Sharygina, editors, FMCAD
2010, pages 101–109. IEEE, 2010.

[56] J. Harrison. HOL Light: A tutorial introduction. In FMCAD ’96, volume 1166
of LNCS, pages 265–269. Springer, 1996.

[57] M. Haslbeck. Verified decision procedures for the equivalence of regular ex-
pressions. B.Sc. thesis, Department of Informatics, Technische Universität
München, 2013.

[58] J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige, T. Rauhe,
and A. Sandholm. MONA: Monadic second-order logic in practice. In
E. Brinksma, R. Cleaveland, K. Larsen, T. Margaria, and B. Steffen, editors,
TACAS 1995, volume 1019 of LNCS, pages 89–110. Springer, 1995.

[59] R. Hinze. Concrete stream calculus: An extended study. J. Funct. Program.,
20(5-6):463–535, 2010.

[60] B. Huffman and O. Kunčar. Lifting and Transfer: A modular design for quo-
tients in Isabelle/HOL. In G. Gonthier and M. Norrish, editors, CPP 2013,
volume 8307 of LNCS, pages 131–146. Springer, 2013.

[61] B. Jacobs. A bialgebraic review of deterministic automata, regular expres-
sions and languages. In K. Futatsugi, J. Jouannaud, and J. Meseguer, edi-
tors, Algebra, Meaning, and Computation, volume 4060 of LNCS, pages 375–
404. Springer, 2006.

[62] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS
Bulletin, 62:222–259, 1997.

118 Bibliography

[63] J. L. Jensen, M. E. Jørgensen, N. Klarlund, and M. I. Schwartzbach. Automatic
verification of pointer programs using monadic second-order logic. In M. C.
Chen, R. K. Cytron, and A. M. Berman, editors, PLDI 1997, pages 226–236.
ACM, 1997.

[64] C. Kaliszyk and C. Urban. Quotients revisited for Isabelle/HOL. In W. C.
Chu, W. E. Wong, M. J. Palakal, and C.-C. Hung, editors, SAC 2011, pages
1639–1644. ACM, 2011.

[65] P. Kelb, T. Margaria, M. Mendler, and C. Gsottberger. Mosel: A sound and
efficient tool for M2L(Str). In O. Grumberg, editor, CAV 1997, volume 1254
of LNCS, pages 448–451. Springer, 1997.

[66] F. Klaedtke. Bounds on the automata size for Presburger arithmetic. ACM
Trans. Comput. Log., 9(2), 2008.

[67] N. Klarlund. A theory of restrictions for logics and automata. In N. Halb-
wachs and D. Peled, editors, CAV 1999, volume 1633 of LNCS, pages 406–417.
Springer, 1999.

[68] N. Klarlund. Relativizations for the logic-automata connection. Higher-Order
and Symbolic Computation, 18(1-2):79–120, 2005.

[69] N. Klarlund and A. Møller. MONA Version 1.4 User Manual. BRICS, Depart-
ment of Computer Science, Aarhus University, January 2001. Notes Series
NS-01-1. Available from http://www.brics.dk/mona/. Revision of BRICS NS-
98-3.

[70] N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA implementation
secrets. Int. J. Found. Comput. Sci., 13(4):571–586, 2002.

[71] S. E. Kleene. Representation of events in nerve nets and finite automata. In
C. E. Shannon and J. McCarthy, editors, Automata Studies, volume 34, pages
3–42. Princeton University Press, 1956.

[72] D. Kozen. A completeness theorem for Kleene algebras and the algebra of
regular events. Inf. Comput., 110(2):366–390, 1994.

[73] D. Kozen. On the coalgebraic theory of Kleene algebra with tests. Tech-
nical Report http://hdl.handle.net/1813/10173, Computing and Informa-
tion Science, Cornell University, March 2008.

[74] D. Kozen and A. Silva. Practical coinduction. Technical report, Cornell Uni-
versity, 2012. http://hdl.handle.net/1813/30510.

[75] A. Krauss. Recursive definitions of monadic functions. In A. Bove, E. Komen-
dantskaya, and M. Niqui, editors, PAR 2010, volume 43 of EPTCS, pages 1–13,
2010.

http://hdl.handle.net/1813/10173
http://hdl.handle.net/1813/30510

119

[76] A. Krauss and T. Nipkow. Proof pearl: Regular expression equivalence and
relation algebra. J. Automated Reasoning, 49:95–106, 2012. published online
March 2011.

[77] A. Krauss, C. Sternagel, R. Thiemann, C. Fuhs, and J. Giesl. Termination of
isabelle functions via termination of rewriting. In M. C. J. D. van Eekelen,
H. Geuvers, J. Schmaltz, and F. Wiedijk, editors, ITP 2011, volume 6898 of
LNCS, pages 152–167. Springer, 2011.

[78] J. Křetínský and J. Esparza. Deterministic automata for the (f, g)-fragment
of LTL. In A. Biere and R. Bloem, editors, CAV 2012, volume 7358 of LNCS,
pages 7–22. Springer, 2012.

[79] O. Kunčar. Correctness of Isabelle’s cyclicity checker—Implementability of
overloading in proof assistants. In X. Leroy and A. Tiu, editors, CPP 2015,
pages 85–94. ACM, 2015.

[80] O. Kunčar and A. Popescu. A consistent foundation for Isabelle/HOL. In
C. Urban and X. Zhang, editors, ITP 2015, volume 9236 of LNCS, pages 234–
252. Springer, 2015.

[81] A. Lochbihler and J. Hölzl. Recursive functions on lazy lists via domains and
topologies. In G. Klein and R. Gamboa, editors, ITP 2014, volume 8558 of
LNCS, pages 341–357. Springer, 2014.

[82] R. McNaughton and H. Yamada. Regular expressions and finite state graphs
for automata. IRE Trans. on Electronic Comput, EC-9:38–47, 1960.

[83] A. R. Meyer. Weak monadic second order theory of succesor is not
elementary-recursive. In R. Parikh, editor, Logic Colloquium, volume 453 of
Lecture Notes in Mathematics, pages 132–154. Springer, 1975.

[84] M. Might, D. Darais, and D. Spiewak. Parsing with derivatives: A functional
pearl. In M. M. T. Chakravarty, Z. Hu, and O. Danvy, editors, ICFP 2011,
pages 189–195. ACM, 2011.

[85] N. Moreira, D. Pereira, and S. M. de Sousa. Deciding regular expressions
(in-)equivalence in Coq. In W. Kahl and T. Griffin, editors, RAMiCS 2012,
volume 7560 of LNCS, pages 98–113. Springer, 2012.

[86] R. Nieuwenhuis and A. Oliveras. Fast congruence closure and extensions.
Inf. Comput., 205(4):557–580, 2007.

[87] T. Nipkow and G. Klein. Concrete Semantics: With Isabelle/HOL. Springer,
2014. http://www.in.tum.de/~nipkow/Concrete-Semantics.

[88] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

http://www.in.tum.de/~nipkow/Concrete-Semantics

120 Bibliography

[89] T. Nipkow and D. Traytel. Unified decision procedures for regular expression
equivalence. In G. Klein and R. Gamboa, editors, ITP 2014, volume 8558 of
LNCS, pages 450–466. Springer, 2014.

[90] T. Nipkow and D. Traytel. Unified decision procedures for regular expression
equivalence. In Archive of Formal Proofs. 2014. http://afp.sf.net/entries/

Regex_Equivalence.shtml.

[91] A. Okhotin. The dual of concatenation. Theor. Comput. Sci., 345(2-3):425–447,
2005.

[92] S. Owens, J. H. Reppy, and A. Turon. Regular-expression derivatives re-
examined. J. Funct. Program., 19(2):173–190, 2009.

[93] S. Owre and H. Rueß. Integrating WS1S with PVS. In E. A. Emerson and
A. P. Sistla, editors, CAV 2000, volume 1855 of LNCS, pages 548–551. Springer,
2000.

[94] L. C. Paulson. Mechanizing coinduction and corecursion in higher-order
logic. J. Logic Comp., 7(2):175–204, 1997.

[95] D. Pous. Symbolic algorithms for finite automata (safa). https://opam.

ocaml.org/packages/safa/safa.1.3/, 2014.

[96] D. Pous. Symbolic algorithms for language equivalence and Kleene algebra
with test. In D. Walker, editor, POPL 2015, pages 357–368. ACM, 2015.

[97] D. Pous and D. Traytel. MonaCo: Symbolic/coalgebraic algorithms for
WS1S. https://bitbucket.org/dpous/monaco, 2015.

[98] M. O. Rabin. Decidability of second-order theories and automata on infinite
trees. Tran. of the AMS, 141:1–35, 1969.

[99] J. J. M. M. Rutten. Automata and coinduction (an exercise in coalgebra).
In D. Sangiorgi and R. de Simone, editors, CONCUR 1998, volume 1466 of
LNCS, pages 194–218. Springer, 1998.

[100] J. J. M. M. Rutten. Universal coalgebra: A theory of systems. Theor. Comput.
Sci., 249:3–80, 2000.

[101] N. Schaffroth. A specification-based testing tool for Isabelle’s ML envi-
ronment. B.Sc. thesis, Department of Informatics, Technische Universität
München, 2013.

[102] S. Shelah. The monadic theory of order. Ann. Math., 102(3):379–419, 1975.

[103] A. Silva. Kleene Coalgebra. PhD thesis, Radboud University Nijmegen, 2010.

http://afp.sf.net/entries/Regex_Equivalence.shtml
http://afp.sf.net/entries/Regex_Equivalence.shtml
https://opam.ocaml.org/packages/safa/safa.1.3/
https://opam.ocaml.org/packages/safa/safa.1.3/
https://bitbucket.org/dpous/monaco

121

[104] A. Silva. A short introduction to the coalgebraic method. ACM SIGLOG
News, 2(2):16–27, 2015.

[105] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time:
Preliminary report. In A. V. Aho, A. Borodin, R. L. Constable, R. W. Floyd,
M. A. Harrison, R. M. Karp, and H. R. Strong, editors, STOC 1973, pages 1–9.
ACM, 1973.

[106] W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salo-
maa, editors, Handbook of Formal Languages, pages 389–455. Springer, 1997.

[107] B. A. Trakhtenbrot. Finite automata and monadic second order logic. Sib.
Math. J., 3(1):103–131, 1962.

[108] D. Traytel. [dWiNA Issue #1] Wrong results for simple formulas, 14 Jan 2015.
Archived at https://github.com/Raph-Stash/dWiNA/issues/1.

[109] D. Traytel. [Toss-devel] Toss deciding MSO, 14 Jan 2015. Archived at http:
//sourceforge.net/p/toss/mailman/message/33232473/.

[110] D. Traytel. A codatatype of formal languages. In Archive of Formal Proofs.
2013. http://afp.sf.net/entries/Coinductive_Languages.shtml.

[111] D. Traytel. A coalgebraic decision procedure for WS1S. In S. Kreutzer, editor,
CSL 2015, volume 41 of LIPIcs, pages 487–503. Schloss Dagstuhl—Leibniz-
Zentrum für Informatik, 2015.

[112] D. Traytel. Derivatives of logical formulas. In Archive of Formal Proofs. 2015.
http://afp.sf.net/entries/Formula_Derivatives.shtml.

[113] D. Traytel and T. Nipkow. Verified decision procedures for MSO on words
based on derivatives of regular expressions. In G. Morrisett and T. Uustalu,
editors, ICFP 2013, pages 3–12. ACM, 2013.

[114] D. Traytel and T. Nipkow. Decision procedures for MSO on words based on
derivatives of regular expressions. In Archive of Formal Proofs. 2014. http:

//afp.sf.net/entries/MSO_Regex_Equivalence.shtml.

[115] D. Traytel and T. Nipkow. Verified decision procedures for MSO on words
based on derivatives of regular expressions. J. Funct. Program., 25, 2015. Ex-
tended version of [113].

[116] D. Traytel, A. Popescu, and J. C. Blanchette. Foundational, compositional
(co)datatypes for higher-order logic—Category theory applied to theorem
proving. In LICS 2012, pages 596–605. IEEE Computer Society, 2012.

[117] M. Wenzel. Isar - A generic interpretative approach to readable formal proof
documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry,
editors, TPHOLs 1999, volume 1690 of LNCS, pages 167–184. Springer, 1999.

https://github.com/Raph-Stash/dWiNA/issues/1
http://sourceforge.net/p/toss/mailman/message/33232473/
http://sourceforge.net/p/toss/mailman/message/33232473/
http://afp.sf.net/entries/Coinductive_Languages.shtml
http://afp.sf.net/entries/Formula_Derivatives.shtml
http://afp.sf.net/entries/MSO_Regex_Equivalence.shtml
http://afp.sf.net/entries/MSO_Regex_Equivalence.shtml

122 Bibliography

[118] C. Wu, X. Zhang, and C. Urban. A formalisation of the Myhill–Nerode theo-
rem based on regular expressions (Proof pearl). In M. Eekelen, H. Geuvers,
J. Schmaltz, and F. Wiedijk, editors, ITP 2011, volume 6898 of LNCS, pages
341–356. Springer, 2011.

[119] C. Wu, X. Zhang, and C. Urban. A formalisation of the Myhill-Nerode theo-
rem based on regular expressions. J. Automated Reasoning, 52:451–480, 2014.

	1 Introduction
	1.1 Plan of Attack
	1.2 Related Work
	1.3 Contributions and Structure
	1.4 Publications

	2 Isabelle/HOL and Regular Languages
	2.1 Programming and Proving in Isabelle/HOL
	2.2 Locales
	2.3 Partiality
	2.4 Regular Expressions

	3 Formal Languages, Coinductively
	3.1 Languages as Infinite Tries
	3.2 Regular Operations on Tries
	3.2.1 Primitively Corecursive Operations
	3.2.2 Reducing Corecursion Up-To to Primitive Corecursion

	3.3 Proving Equalities on Tries
	3.4 Coalgebraic Terminology

	4 Language Equivalence Framework
	4.1 The Algorithm, Informally
	4.2 Coalgebras as Locales
	4.3 The Algorithm, Formally
	4.4 Termination

	5 Regular Expression Equivalence
	5.1 Derivatives
	5.1.1 Brzozowski Derivatives
	5.1.2 Partial Derivatives

	5.2 Marked Regular Expressions
	5.2.1 Mark After Atom
	5.2.2 Mark Before Atom
	5.2.3 Comparison

	5.3 Empirical Comparison
	5.4 Extensions

	6 -Extended Regular Expressions
	6.1 Syntax and Semantics
	6.2 Decision Procedure
	6.3 Atoms with More Structure
	6.4 Alternatives to Brzozowski Derivatives

	7 WMSO Equivalence via Regular Expression Equivalence
	7.1 Syntax and Two Semantics
	7.2 From WMSO Formulas to Regular Expressions
	7.3 Decision Procedure
	7.4 Case Study: Finite-Word LTL

	8 Derivatives of Formulas
	8.1 Formula Derivatives
	8.2 Accepting Formulas
	8.3 Decision Procedure
	8.4 Minimum Semantics Optimization
	8.5 Case Study: MonaCo
	8.6 Case Study: Presburger Arithmetic

	9 Conclusion
	9.1 Results
	9.2 Future Work

	Bibliography

