
Refinement Based Verification of Imperative Data Structures

Peter Lammich
Technische Universität München, Germany

lammich@in.tum.de

Abstract
In this paper we present a stepwise refinement based top-down
approach to verified imperative data structures. Our approach is
modular in the sense that already verified data structures can be used
for construction of more complex data structures. Moreover, our
data structures can be used as building blocks for the verification of
algorithms. Our tool chain supports refinement down to executable
code in various programming languages, and is fully implemented
in Isabelle/HOL, such that its trusted code base is only the inference
kernel and the code generator of Isabelle/HOL.

As a case study, we verify an indexed heap data structure, and
use it to generate an efficient verified implementation of Dijkstra’s
algorithm.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Verification

Keywords Data Structures, Interactive Theorem Proving, Is-
abelle/HOL, Stepwise Refinement, Separation Logic

1. Introduction
When verifying algorithms that should also come with verified
efficient implementations, it is essential to have a library of reusable
standard data structures, which can be used as building blocks for
the efficient implementation.

The Isabelle Collection Framework [14] provides such a library
for purely functional data structures. However, the most efficient
implementations of many algorithms require imperative data struc-
tures. With the Sepref tool [13], we have recently established an
infrastructure for the verification of imperative algorithms. In this
paper, we describe our approach to the development of verified,
efficient imperative data structures, building on and extending the
Sepref tool.

Based on the Isabelle Refinement Framework [16], we use a
stepwise refinement approach to separately prove the algorithmic
ideas of the data structures, and their low-level implementations.
This separation of concerns greatly simplifies the proofs. Moreover,
it allows for reuse of already verified basic data structures in the
context of more complex data structures.

Our approach is based on Isabelle/HOL, whose LCF architec-
ture guarantees that every proof must go through a trustworthy and
relatively small logical inference kernel. In particular, implementa-
tion bugs in our tool cannot compromise the validity of a proved
correctness theorem, but only the ability to prove the theorem.

We illustrate our approach with the development of an indexed
heap (heapmap) data structure, which is then used in a verified
version of Dijkstra’s shortest paths algorithm [6]. We build on an ex-
isting verification of a functional version of Dijkstra’s algorithm [19].
Exploiting our tools, replacement of the original purely functional
priority queue by the imperative heapmap implementation is straight-
forward, and, thanks to the refinement based approach, the existing
formalization can be reused without modification or duplication.

1.1 Contributions
This paper describes a stepwise refinement approach to the veri-
fication of imperative data structures. Although presented for Is-
abelle/HOL, our methods should also be usable in other refinement
based program verification settings.

In previous research, we have already explored refinement ap-
proaches for algorithms [12, 13, 16], and we also have explored
verification of purely functional data structures [14, 17, 18]. How-
ever, the verification of complex imperative data structures poses
some new challenges:

• Complex imperative data structures are often composed from
simpler building blocks, and the complex data structure can be
proved correct over an abstract view on its building blocks. Then,
refinement is used to implement the abstract building blocks,
and thus obtain an implementation of the complex data structure.
For example, in our heapmap data structure, we have a list of
keys, which is implemented by an array and a lookup table from
keys to array indexes. The lookup table, in turn, is implemented
by an array.
This paper describes how to systematically handle such imple-
mentation hierarchies, exploiting the automation infrastructure
provided by our Sepref tool.
• Imperative data structures are often implemented with fixed

capacities, e. g. our heap is implemented as a (fixed size) array,
whose capacity is specified on allocation time. This poses
additional proof challenges when refining from an abstract
version of the data structure which has no such limitation.
This paper explores techniques to semi-automatically do such
refinements in certain cases, exploiting parametricity arguments.
For example, Dijkstra’s algorithm uses a priority queue to
store nodes of a graph, represented by numbers from {0..<N}.
If we know that the graph operations only return nodes less
than N , and that the algorithm does not fiddle with the node
representation (e. g. incrementing nodes), we can conclude that
pushing nodes to the priority queue is always within the capacity
limit N .

• Data structures usually have element types. If the data structure
is used in an algorithm, one usually wants to refine both the
representation of the data structure and the representation of
the element type. However, for proving correctness of an imple-
mentation, it is much simpler to assume that the element types
are not refined. This paper shows how to exploit parametricity
arguments to get from an implementation that does not support
element refinement to one that does. While we have already used
such techniques for a purely functional setting in our Autoref
tool [12], we transfer them to an imperative setting, and add
some automation which simplifies their application.

To enable the techniques described above, we had to slightly
extend the Sepref tool itself. Apart from extensions that simplify
usability of the tool, this paper describes the FCOMP tool, which
puts the different notions of refinement from our previous work
(functional to functional, functional to imperative) into a unified
framework and supports composition of refinement relations.

Finally, we have applied our techniques in a case study to verify
the heap and heapmap data structures, and use them in a verified
version of Dijkstra’s shortest paths algorithm [6]. While heaps
and heapsort algorithms are a standard verification benchmark, we
believe to be the first to verify the considerably more complex
heapmap data structure. The abstract version of Dijkstra’s algorithm
stems from earlier work of the author [19], where a purely functional
priority queue data structure was used.

The rest of this paper is organized as follows: In Section 2, we
briefly introduce some notational conventions, the Isabelle Refine-
ment Framework, and the basics of refinement to imperative pro-
grams. Section 3 describes our methods for the implementation of
imperative data structures, and illustrates them by simple examples.
Section 4 presents our case study, the implementation of heapmaps
and Dijkstra’s algorithm. Finally, related work and conclusions are
presented in Section 5.

The Isabelle source code of this project is available at http:
//www21.in.tum.de/~lammich/heapmaps, and we also plan to
submit it to the Archive of Formal Proofs. (http://afp.sf.net)

2. Prerequisites
In this section we first fix some notational conventions. Then,
we briefly introduce the theory behind the Isabelle Refinement
Framework and the Sepref tool. For a more complete description,
we refer the reader to [12, 13, 16].

2.1 General Notations
We use some notations derived from Isabelle/HOL syntax. Function
arguments are separated by whitespace, i. e. we write f a b to apply
f to arguments a and b. Moreover, we identify curried and uncurried
functions, and functions to Boolean values and sets. For example,
we may write the proposition that a and b are related by relation R
as R a b or (a,b)∈R.

Type arguments are applied in prefix notation, e. g. int list for
a list of integers. Type variables are prefixed by a tick, e. g. ′a.
Datatypes are defined by their constructors, separated by |. For
example, lists are defined as:
′a list ≡ [] | ′a # (′a list)

where x#xs is infix notation for Cons x xs. Constants are defined
using ≡, where we separate pattern matches by |. For example,
concatenation of two lists is defined as:

[]@ys ≡ ys | (x#xs)@ys ≡ x#(xs@ys)

where xs@ys is infix notation for append xs ys. To explicitly declare
the type of a constant, we use ::, e. g. Cons :: ′a⇒ ′a list⇒ ′a list.

For a monad, we use a semicolon for bind. If the bound value is
not used, we may omit it. I. e. we define the notation:

x← m; f x ≡ bind m f
m; f ≡ bind m (λ . f)

Note that we use underscores () as wildcards.

2.2 The Isabelle Refinement Framework
The Isabelle Refinement Framework [12, 16] is a set of theories
and tools that support the development of verified programs inside
Isabelle/HOL, featuring a stepwise refinement approach [2, 25].
Recently, we have extended the framework to support refinement to
imperative programs [13].

A program in the Isabelle Refinement Framework is described as
a function which returns a result of type ′a nres ≡ res ′a set | fail. In-
tuitively, res X describes that the program may nondeterministically
return any value from the set X , and fail means that an assertion
in the program fails. We lift the subset ordering to nres, with fail
being the greatest element: res X ≤ res Y ≡ X ⊆ Y | ≤ fail. Note
that this ordering forms a complete lattice over nres. We define a
set-exception monad over nres as follows:

return x ≡ res {x}
bind (res X) f ≡ Sup x∈X. f x | bind fail ≡ fail

Moreover, we define recursion by a fixed point construction:

rec F x ≡ assert (mono F); gfp F x

where assert Φ ≡ if Φ then return () else fail.
This gives us a shallowly embedded nondeterministic program-

ming language in Isabelle/HOL, in which we can elegantly express
abstract algorithms and their specifications. We define the shortcut
spec x. Φ x ≡ res {x. Φ x} for all values that satisfy the predicate
Φ. Then, correctness of a program f wrt. precondition pre and
postcondition post is specified as

pre args =⇒ f args ≤ spec r. post args r

i. e. if the precondition holds for the arguments, the possible results
satisfy the postcondition. (which also depends on the arguments.)

Sometimes we want to prove additional properties about a
program of that we already know that it does not fail. We de-
fine m ≤n m′ ≡ m 6=fail =⇒ m ≤ m′. When proving refinement wrt.
≤n, assertions on the left hand side may be assumed, i. e. we have
the rule:

[[Φ =⇒ m ≤n m′]] =⇒ assert Φ; m ≤n m′

Data refinement is specified by a refinement relation between
concrete and abstract values. The function ⇓, which is defined as

⇓R (res X) ≡ res (R−1 X) | ⇓R fail ≡ fail

returns the greatest concrete result which refines the given ab-
stract result wrt. the refinement relation R. Thus, the proposition
(ai,a) ∈ R =⇒ fi ai ≤⇓S (f a) states that fi refines f wrt. relation
R for the arguments and S for the result. For convenience, we in-
clude an additional precondition for the abstract arguments and
define the notation:

(fi,f): [λa. pre a] R→ S ≡ ∀(ai,a)∈R. pre a =⇒ fi ai ≤⇓S (f a)

If the precondition is always true, we just write (fi,f): R→ S.
Moreover, we identify curried and uncurried functions, and write
(fi,f): R1→ . . . → Rn→ S for functions with n arguments that are
refined by R1 . . . Rn.

http://www21.in.tum.de/~lammich/heapmaps
http://www21.in.tum.de/~lammich/heapmaps
http://afp.sf.net

2.3 Imperative Programs
We represent imperative programs using the heap monad of Impera-
tive/HOL [3]. Its type ′a Heap represents a deterministic operation
that modifies the heap and returns a result of type ′a.

To reason about heap-modifying programs we use separa-
tion logic [4, 22], which we have formalized on top of Impera-
tive/HOL [13, 15]. In order to relate data structures on the heap with
plain values, we use refinement relations of type ′c⇒ ′a⇒ assn,
where assn is the type of separation logic assertions. For example,
the assertion a 7→a l states that a points to an array that contains the
values in list l, thus relating the array and the list.

Refinement between a program c in the deterministic heap monad
and a program a in the nondeterministic nres monad wrt. refinement
relation S is expressed by the Hoare triple:

{} c {ri. ∃r. S ri r ∗ return r ≤ a }
I. e. the result ri, which may contain pointers to the heap, must be
related to a plain value r, which is among the possible results of
the abstract program. We extend this to arguments, and define the
following notation:

(fi,f): [λa. pre a] (R,R′)→ S ≡ ∀ai a.
{pre a ∗ R ai a}

fi ai

{ri. R′ ai a ∗ ∃r. S ri r ∗ return r ≤ f a}
As the function may have side effects on the heap, we use R to
describe the refinement of the arguments before fi is executed, and
R′ for the state after execution of fi. Again, we may omit vacuous
preconditions, and write (fi,f): (R1,R′1)→ . . . → (Rn,R′n)→ S
for multiple arguments. Note that, for a single argument, we usually
have either R′i = Ri (the function does not change the argument) or
R′i = λ . true (the function invalidates the argument). Thus, we
define the notations Rk ≡ (R,R) and Rd ≡ (R,λ . true) to express
that an argument is kept or destroyed.

Consider, for example, array update and list update:

a upd :: ′a array⇒ nat⇒ ′a⇒ ′a array Heap
l upd :: ′a list⇒ nat⇒ ′a⇒ ′a list nres

They satisfy the following refinement theorem:

(a upd,l upd): [λl i v. i<length l] (7→a)d→ Idk → Idk → (7→a)

Note that we define Id x y ≡ x=y, i. e. the values x and y are not
compared wrt. the heap content. We call relations that do not depend
on the heap pure, and identify them with the refinement relations
for values that we used in Section 2.2.

2.4 The Sepref Tool
The Sepref tool [13] automates the refinement from a functional
program in the nres monad to an imperative program in the heap
monad. Given a program in the nres monad, it automatically gen-
erates a program in the heap monad and proves a corresponding
refinement theorem. Thereby, it replaces abstract data types by ef-
ficient imperative data structures. A linearity analysis of the input
program identifies opportunities for destructive update, and an op-
eration identification heuristics tries to identify abstract data types
and operations on them in the input program.

2.5 Composition and Nested Refinement
We define (R1 O R2) a c ≡ ∃b. R1 a b ∗ R2 b c to be the composi-
tion of refinement relations R1 and R2.

When we refine data structures, they often have element types,
e. g. a set has an element type, and a map has types for keys and
values. Typically, we also want to refine the element types1. For

1 Currently, our Sepref tool only supports pure refinements for element types.

this, we parameterize the refinement relations with relations for the
element types.

A special case are refinement relations that preserve the structure
of the outer type, and only refine the element types. For example,
the relation 〈R〉list rel relates two lists of the same length, whose
elements at corresponding indices are related by R:

〈R〉list rel ≡ {([c1,. . . ,cn],[a1,. . . ,an]) | ∀i. (ci,ai) ∈ R }

Note that we use, similar to type arguments, a prefix notation for the
parameter relations.

An elegant way to construct refinement relations that support
refinement of elements is by composing a refinement relation for
the structure of the data type with a structure preserving one for
the element types. For example, 7→a O 〈R〉list rel is a refinement
between arrays and lists, such that the elements of the list are
refined by R. Operations which are related to themselves wrt. a
structure preserving refinement relation are called parametric [21].
For example, we have:

(l upd,l upd):
[λl i v. l<length l] 〈R〉list rel→ Id→ R→ 〈R〉list rel

For parametric operations, it is straightforward to extend an
implementation that does not support refinement of the element
types to one with refinement for the element types (cf. Section 3.4).

3. Implementing Data Structures
In the last section, we gave a brief overview of the Isabelle Refine-
ment Framework. In this section, we describe our techniques to
implement efficient and verified imperative data structures, which
can be used as building blocks to construct efficient verified algo-
rithms.

3.1 Interfaces
Intuitively, an interface describes the operations on an abstract data
type. Operations may come with preconditions, and may be non-
deterministic.

Formally, an interface consists of a data type T , and a col-
lection of operations related to T . The operations are specified
in the nres monad, such that preconditions can be expressed
via assertions. A typical operation specification has the form
f args = assert pre args; spec r. post args r, where pre is the pre-
condition, and post is the postcondition of the operation.

Example 3.1. The list interface has type T = α list. The determin-
istic operation nil op ≡ return [] returns the empty list; the deter-
ministic operation hd op l ≡ assert l 6=[]; return (hd l) returns the
first element of a non-empty list; and the nondeterministic operation

idx of op l x ≡ assert x∈set l; spec i. i<length l ∧ l!i = x

returns an index of element x, which must be in the list at least once.

Apart from the data type and operations, an interface contains
some setup for the Sepref tool. This ensures that Sepref will correctly
recognize operations of this interface, and translate standard Isabelle
functions to operations of the interface, based on its operation
identification heuristics. For example, also [] may be recognized as
empty list operation. Similarly, hd may be recognized as operation
to return the first element of a list. However, this requires a proof that
the list is not empty, which only succeeds if the program contains
enough information for an automatic proof, e. g. via assertions or
conditionals.

In general, when implementing abstract algorithms, there is a
trade off between using abstract operations that come with precon-
ditions, and plain Isabelle functions. The former choice ensures
that the preconditions are readily available on refinement, while, for

the latter option, enough assertions to get refinement through have
to be added manually. On the other hand, the abstract operations
are monad operations, and thus cannot be composed to complex
expressions as concisely as plain functions.

Example 3.2. For example, the program return hd (hd l) returns
the second element of the list l. In order to refine this, one has to
add an assertion, i. e. assert length l >= 2; return hd (hd l). If one
forgets this assertion, the program can still be proved correct, but
refinement will fail. On the other hand, using monad operations,
the same program reads as t← hd op l; hd op t, i. e. one has to
make explicit the intermediate result, which can be cumbersome for
more complex expressions. However, refinement of this program
always succeeds, as hd op already contains the assertion of the
precondition.

3.2 Implementations
An implementation of an interface with type T provides a concrete
data type T ′, and a refinement relation R : T ′ → T → assn.
Moreover, an implementation defines concrete operations on T ′ for
the abstract operations on T , and proves that they are related via R.
Optionally, R may be parameterized with refinement relations for
inner types.

An implementation may restrict its interface in several ways:

• It needs not implement all operations. This allows for specialized
implementations that focus on certain operations, without the
formal requirement of defining a new interface for them.
• It may restrict the representable abstract data. For example, a set

implementation may be restricted to finite sets.
• It may restrict the element types of the abstract data type. For

example, a list implementation may be restricted to lists of
natural numbers.
• It may add further preconditions to operations. For example, an

insert operation may add the precondition that the size of the set
is below a maximum size.

As for interfaces, an implementation comes with a setup of the
Sepref tool, such that the implementation can be used by automatic
synthesis. The setup declares the refinement theorems for the opera-
tions to Sepref. Moreover, it defines custom versions of the abstract
constructor operations, i. e. those that return a type containing T but
where the argument types do not contain T . These custom construc-
tor operations, which are specific to the implementation, are used to
control the implementation selection during synthesis: The user has
to rewrite the constructor operations in the abstract program to the
specific constructors for the desired implementation2. Alternatively,
there are default implementations for certain interfaces, which are
associated with the original constructor operations.

Example 3.3. A list of fixed length can be implemented by an array.
The refinement relation is 7→a. In this implementation, we allow
no refinement of the element type. Moreover, we only implement
operations which do not change the size of the list, e. g. indexing
and length. Note that operations like hd can be implemented based
on indexing.

For example, the refinement lemma for indexing into a list is

(Array.nth,lst op get) : (7→a)k → nat relk → Id

As we do not refine the element type, the refinement relation for the
result is the identity relation Id.

The implemented constructor operations are the empty list [],
and replicate n v, which returns a list of n vs. We define the specific
synonyms array empty and array replicate for these operations, and

2 Using the recent rewrite tool [24], this is usually a straightforward task.

register the refinement lemmas with these synonyms. Moreover, we
also define the lemma hnr array dflt to be the refinement lemmas for
the original operations. Now we can, locally, declare hnr array dflt
to the Sepref tool to use arrays as default list implementation.

3.2.1 Fixed Capacity Implementations
A notable special class of implementations are those where an initial
capacity is specified on construction, and the data structure can
only grow up to this capacity. In imperative programs, such data
structures are quite common, as they require no dynamic resizing
on overflow.

To map those data structures to our approach, we have to
specify the capacity as a parameter of the refinement relation.
Moreover, operations that grow the data structure get the additional
precondition that the data structure is not yet full.

Making the refinement relation dependent on an argument passed
to the constructor has, however, a caveat: If an operation computes
an initial size, and then returns the data structure with this initial
size, its refinement relation may depend on an arbitrary complex
function in the operation’s arguments.

Currently, Sepref is quite limited in what it can synthesize: The
maximum size must be a constant or an argument of the function.
Otherwise, we have to do the refinement manually. Note that
Sepref can use dependent refinement theorems during a synthesis,
it only cannot synthesize them itself. Thus, this restriction did not
complicate the refinements in our case study (cf. Section 4.3), where
we use data structures with fixed capacity. We leave it to future work
to explore ways to automatically synthesize dependent refinement
relations.

Example 3.4. A list can be implemented by a length counter n and
an array a, such that the list is formed by the initial n elements of
the array. If we do not want to dynamically reallocate the array on
over/underflow, the list cannot grow beyond the initial capacity of
the array. However, this initial capacity is not visible in the abstract
data type, which is just a plain list. Thus, we have to make it visible
in the refinement relation: We define:

msl rel N (n,p) l
≡ ∃l′. p 7→a l′ ∗ n≤N ∗ l = take n l′ ∗ length l′ = N

Here, the additional parameter N to the refinement relation denotes
the capacity of the list. Operations have additional preconditions
based on N , e. g. for appending an element to the list, we have:

(msl ap, lst op ap):
[λl x. length l<N] (msl rel N)d→ Idk → msl rel N

3.3 Reusing Data Structures
When implementing complex data structures, it can be profitable
to make use of already implemented data structures for the im-
plementation itself. In many cases, the new data structure can be
abstractly represented using some interfaces first, and in a second
step, this abstract implementation can be refined to a concrete one,
using implementations of the used interfaces. Usually, the second
step, i. e. implementing the used interfaces, is canonical and can be
completely automated by Sepref.

This approach has the advantage of proof modularization and
reuse: In the first step, one can focus on the abstract idea of the
data structure, while the second step focuses on its implementation,
reusing existing implementations of the used interfaces.

Note that this approach works well for array-based data struc-
tures, as they always have an abstract representation using lists.
However, pointers do not have meaningful abstract representations
outside the heap monad. As Sepref currently cannot perform refine-
ments inside the heap monad, but only from the nres to the heap
monad, we loose the advantage of automation in those cases.

Example 3.5. In Example 3.4, we sketched the implementation of
a list by a number n for the length and an array. We can also verify
this implementation on a number and a fixed length list first, and
then implement the list by the array implementation described in
Example 3.3.

For the first refinement step, we define msl rel1 as follows:

msl rel1 N ≡ br (λ(n,l). take n l) (λ(n,l). n≤N ∧ length l = N)

Note that br α I defines a refinement relation from an abstraction
function and an invariant:

br α I ≡ { (c, α c) | I c }

The append operation is implemented as follows:

msl ap1 (n,l) x ≡ l← lst op set l n x; return (n + 1, l)

Clearly, updating the element at index n via lst op set adds the
precondition n<length l. Thus, we prove the following refinement:

apref1: (msl ap1, lst op ap):
[λl x. length l<N] msl rel1 N→ Id→ msl rel1 N

Using the array implementation of the list interface described in
Example 3.3, Sepref automatically synthesizes refinements for the
operations. For example, it synthesizes msl ap2 with the refinement
theorem:

apref2: (msl ap2, msl ap1): msl rel2d→ Idk → msl rel2

where msl rel2 = nat rel × 7→a. Note that we use × as the natural
relator of products here, i. e.

((c1,c2),(a1,a2)) ∈ R1 × R2 ≡ (c1,a1)∈R1 ∧ (c2,a2)∈R2

Combining the theorems apref1 and apref2 yields

apref: (msl ap2, lst op ap):
[λl x. length l<N] msl rel N→ Id→ msl rel N

where msl rel = msl rel2 O msl rel1.
Note that the algorithmic idea of the data structure, i. e. repre-

senting a variable length list by a fixed length one and a counter, was
proved in Theorem apref1. In this proof, we could use lists for which
there is a well-developed Isabelle/HOL library. The implementation
idea, i. e. using arrays to implement fixed length lists, was proved in
Theorem apref2. By reusing an already existing implementation for
fixed length lists, this was fully automatic in our case.

3.3.1 FCOMP Tool
In Example 3.5 we had to combine two refinement lemmas to yield
a new one. This is possible due to transitivity of refinement, i. e. we
have3:

(f1,f2): U1→ R1 ∧ (f2,f3): U2→ R2

=⇒ (f1,f3): (U1 O U2)→ (R1 O R2)

After application of this rule, we get the argument relation
U1 O U2. However, for n arguments, Sepref expects the rela-
tion to have the form A1 × . . . × An. Fortunately, we have
(A × B) O (A′ × B′) = (A O A′) × (B O B′). Thus we can use
rewriting to bring the relation into the expected form.

We have implemented this composition and rewriting, together
with some normalization of the combined preconditions, as an
Isabelle attribute. Thus, obtaining Theorem apref (cf. Example 3.5)
is as easy as writing:

lemmas apref = apref2[FCOMP apref1]

3 Note that we have skipped handling of preconditions and preservation
information for the sake of simplicity.

3.4 Exploiting Parametricity
Note that we have not refined the element types of the implemented
data structures in our previous examples. This greatly reduced the
complexity of the refinement proofs. However, ultimately, we also
want to specify refinements for the element types.

If the interface operations are parametric, refinement of element
types can simply be added by composing the original refinement
theorems with the parametricity theorems.

Note that interface operations are typically parametric wrt.
relators that support some refinement for the element types.

Example 3.6. The operations of the list interface are parametric
wrt. the natural relator on lists. Only the idx of operation, which
returns the index of an element, requires that the relation for the
elements preserves equality.

For example, we have:

(lst op ap, lst op ap): 〈R〉list rel→ R→ 〈R〉list rel

Composing this with the theorem apref from Example 3.5 yields:

(msl ap2, lst op ap):
[λl x. length l<N] 〈R〉msl rel′ N→ R→ 〈R〉msl rel′ N

where 〈R〉msl rel′ N ≡ msl rel N O 〈R〉list rel. Again, we can use
the FCOMP tool to automatically obtain the new refinement lem-
mas4.

4. Case Study: Heap and Heapmap
In the last section, we have introduced our refinement based devel-
opment methods for verified imperative data structures along with
simple examples. In this section, we present a case study for a more
complex example: We formalize a heap data structure, extend it
to a heapmap (also called indexed heap), and finally use our data
structure to obtain an efficient implementation of Dijkstra’s shortest
paths algorithm [6]. This case study shows that our methods are
applicable for the development of more complex data structures,
and that the resulting data structures are usable as building blocks
for verified algorithms.

4.1 Heaps
A heap (cf. [23, Chap. 2.4]) is a binary tree whose nodes have
priorities, such that each node has smaller or equal priority than
its children. Clearly, the root node has minimal priority. Heaps
are a standard data structure to implement priority queues. For the
imperative version of heaps, the binary tree is usually encoded as a
list (implemented by an array), such that the root is at index 1, and
the left and right children of a node at index i are at indexes 2i and
2i+ 1 respectively.

Removing an element with minimal priority is achieved by
copying the last element of the list to the root node, shortening the
list by one, and then performing the sink (or sift down) procedure to
restore the heap property: as long as the element is not smaller or
equal than its children, the sink procedure exchanges the element
with its smaller child. Thus, the element ,,sinks down” until the heap
property is restored.

Symmetrically, new elements are inserted at the end of the list,
i. e. at a leaf node position, and then the swim (or sift up) procedure
restores the heap property: as long as the parent’s priority is bigger,
it exchanges the element with its parent. Thus, the element ,,swims
up” until the heap property is restored.

4 Currently, some cases require straightforward massaging of the generated
precondition, e. g. to transport the length function over the list relator.
However, this could also be added to the FCOMP tool in a future version.

Roughly following the presentation of Sedgewick et al. [23], we
base the heap operations on a few basic operations that actually
access the data structure:

empty: ′a heap — The empty heap.
val of: ′a heap⇒ nat⇒ ′a — Get element at valid index.
exch: ′a heap⇒ nat⇒ nat⇒ ′a heap — Exchange elements at two

valid indices.
butlast: ′a heap⇒ ′a heap — Remove last element of non-empty

heap.
append: ′a heap⇒ ′a⇒ ′a heap — Append new element.

The preconditions of the operations are printed in bold face.
This architecture is well suited to refinement, as only the basic

operations need to be implemented in order to get an implementation
of the other operations automatically.

4.1.1 Priority Queue Interface
The type of our priority queue interface is ′a multiset. Moreover, we
assume a fixed function prio: ′a⇒ ′b::linorder, which maps each
element to its priority, where priorities have a linear order. The
operations are the following:

empty: ′a multiset — Empty priority queue.
is empty: ′a multiset⇒ bool — Test for emptiness.
insert: ′a multiset⇒ ′a⇒ ′a multiset — Insert element.
peek min: ′a multiset⇒ ′a — Return a minimal element a of non-

empty queue.
pop min: ′a multiset⇒ (′a multiset × ′a) — Remove and return a

minimal element of a non-empty queue.

4.1.2 Implementation on Lists
In order to implement this interface by an efficient array data
structure, we take a two-step approach: In a first step, we model the
heap as a list, and in a second step, we implement the list by a length
counter and an array (cf. Example 3.5). The first step performs
the correctness reasoning of the heap data structure. For this task,
lists, which are backed by a well-developed Isabelle theory, are
appropriate. The second step is mostly automatic: We reuse the
array-based list implementation depicted in Example 3.5, and let
Sepref synthesize the implementation for us.

For the first step, we define the following refinement relation,
which abstracts the list to the multiset of its elements, and captures
the heap property described above:

heap1 α ≡ multiset of
heap1 invar h ≡ ∀i. 1<i≤length h
−→ prio (val of h (i/2)) ≤ prio (val of h i)

heap1 rel ≡ br heap1 α heap1 invar

Then, we define the basic operations in terms of the list interface, and
set up the VCG to produce verification conditions over plain lists,
which are convenient to prove. In this case, the setup is particularly
simple, as each operation corresponds to exactly one operation of
the list interface, only the indices have to be converted from 1-based
indexing into the heap to 0-based indexing into lists.

For example, the exchange operation is defined as follows:

exch op l i j ≡ assert (i>0 ∧ j>0); lst op swap l (i − 1) (j − 1)

Moreover, we declare the following rule to the VCG, to map the
operation to the plain list operation swap:

[[valid l i; valid l j]]
=⇒ exch op l i j ≤ return (swap l (i−1) (j−1))

where valid l i ≡ 0 < i ≤ length l denotes a valid index.
The next step is to define the auxiliary operations sink and

swim, based on the val of and exch operations. We follow the

swim1 op h i ≡
rec (λswim (h,i). do {

assert (valid h i);
if has parent h i then do {
vpi← val of op h (parent i);
vi← val of op h i;
if (¬ (prio vpi ≤ prio vi)) then do {

h← exch op h i (parent i);
swim (h, parent i)
} else

return h
} else

return h
}) (h,i)

private boolean greater(int i, int j) {
if (comparator == null) {

return ((Comparable<Key>) pq[i]).compareTo(pq[j]) > 0;
} else {

return comparator.compare(pq[i], pq[j]) > 0;
}
}

private void swim(int i) {
while (i > 1 && greater(i/2, i)) {

exch(i, i/2);
i = i/2;
}
}

Figure 1: Isabelle and Java implementation of swim.

definitions of [23], but use explicit tail recursion instead of while
loops. Moreover, we chose to use the basic operations in monadic
style, such that they contain assertions of their preconditions. While
this makes the code slightly larger, it is more amenable to later
refinement (cf. Example 3.2).

In Figure 1, we display our implementation of the swim function
and the corresponding Java implementation from [23]5: Note that
we did not define an own function for the comparison of two keys:
Though this would make the algorithm slightly more readable, it
has no positive effect on the generated VCs.

For our swim operation, we prove two correctness conditions:
(1) It does not change the multiset abstraction of the list and (2) it
restores the heap invariant if it is locally violated at index i, which is
expressed by swim invar h i. We prove the following theorem and
declare it to the VCG:

swim invar h i =⇒ swim1 op h i
≤ spec h′. heap1 α h′ = heap1 α h ∧ heap1 invar h′

The proof is fairly straightforward, the main work goes into proving
that swim invar is an invariant.

Finally, we implement the priority queue operations and show
them correct wrt. the multiset based interface. For example, the
insert operation is implemented as follows:

insert1 op h v ≡ do {
assert (heap1 invar h);
h← append1 op h v;
swim1 op h (length h)
}

5 We slightly changed the layout, and renamed the argument of swim, to get
the same naming as in the Isabelle source

To show its correctness, we first prove that appending an element to
the heap only violates the heap property locally:

lemma swim invar insert:
heap1 invar l =⇒ swim invar (l@[x]) (length l + 1)
unfolding swim invar def heap1 invar def valid def

parent def val of def
by (fastforce simp: nth append)

Thanks to the powerful Isabelle list library, this proof is fairly
straightforward: We first unfold some definitions to convert the
proposition to one over standard list functions, and then complete
the proof by Isabelle’s fastforce tactic with one additional hint.
Having proved the above lemma, showing correctness of the insert
operation is straightforward, using the VCG:

lemma insert op refine:
(insert1 op,insert) ∈ heap1 rel→ Id→ heap1 rel
unfolding insert1 op def[abs def] heap1 rel def
by refine vcg (auto simp: swim invar insert in br conv)

4.1.3 Implementation with Arrays
Refining the list-based heap implementation to arrays is straightfor-
ward, and provides no surprises. First, we agree on a refinement re-
lation: We use the list implementation from Example 3.5, and define
heap2 rel N ≡ msl rel N. Here, N is the capacity of the heap. Then,
we use the Sepref tool to automatically synthesize implementations
of the basic operations, and, after declaring these implementations
to Sepref, it can also synthesize implementations of the remaining
operations. Finally, we use the FCOMP tool to combine the refine-
ment lemmas from array-based to list-based, and from list-based to
multiset-based, resulting in an implementation of the multiset-based
priority queue interface, wrt. the refinement relation:

heap rel N ≡ heap2 rel N O heap1 rel

For example, Sepref synthesizes a function insert impl with:

(insert impl, insert1 op):
[λl x. length l<N] (heap2 rel N)d→ Idk → heap2 rel N

Combining this with Lemma insert op refine, we get:

(insert impl, insert):
[λm x. size m<N] (heap rel N)d→ Idk → heap rel N

4.2 Heapmaps
In the last section we have implemented a simple priority queue
interface with heaps. For the verification, we used two main tech-
niques: First, we restricted the access to the actual data structure
to a few basic operations. This makes further refinement simpler,
as from a refinement of the basic operations, a refinement of the
other operations can be generated automatically. Second, we used a
two-step approach, first proving the idea of the heap data structure
on lists, and then implementing the lists with arrays. This stepwise
refinement approach separates the proof of the algorithmic idea of
the data structure from the proof of its implementation. Moreover, it
allowed us to reuse an existing implementation of the list interface.

4.2.1 Priority Map Interface
The multiset-based priority queue interface does not support access
to other elements than a minimal one. For this we define the priority
map interface over the type (′k,′v)pm ≡ ′k⇒ ′v option, which is the
standard Isabelle type for partial functions (called maps), and comes
with a large library and good proof automation setup. As for priority
queues, we fix a function prio: ′v⇒ ′b::linorder, which maps values

to priorities, In the following, we display some selected operations
of the priority map interface:

empty: (′k,′v)pm — Empty map.
is empty: (′k,′v)pm⇒ bool — Emptiness check.
insert: ((′k,′v)pm)⇒ ′k⇒ ′v⇒ ((′k,′v)pm) — Update value at

unmapped key.
decr: ((′k,′v)pm)⇒ ′k⇒ ′v⇒ ((′k,′v)pm) — Decrease priority of

existing entry.
remove: ((′k,′v)pm)⇒ ′k⇒ ((′k,′v)pm) — Remove mapping for

existing key.
lookup: ((′k,′v)pm)⇒ ′k⇒ ′v option — Retrieve value for key.
pop min: ((′k,′v)pm)⇒ (((′k,′v)pm)×′k×′v) — Remove and re-

turn a minimal element from non-empty map.

4.2.2 Implementation with List and Map
In [23], a data structure for indexed priority queues is described: It
is based on a heap that contains the keys, and a map from keys to
values. The data structure maintains an additional map from keys to
their indexes on the heap, which is required to locate the element on
the heap if it is removed or its priority changes.

The keys are restricted to natural numbers less than N , where N
is an initially fixed capacity. This allows an implementation of the
maps as arrays.

In order to implement this data structure, we again use stepwise
refinement: First, we model the heap as a list, and the map from keys
to values as a map of type ′k ⇀ ′v option. Note that we do not need
to model the map from keys to heap indices, as this information can
be obtained by looking up the key in the heap. In a second step, we
add the map to heap indices, and implement the maps and the heap
by arrays.

When verifying this implementation, we want to reuse the verifi-
cation that we have already done for heaps. However, we cannot use
the multiset-based priority queue interface to describe our heapmap
data structure, as we require indexing into the heap. Instead, we de-
fine a relation between our heapmap data structure and the list-based
heap data structure, and show that the heapmap operations refine the
corresponding heap operations. From this, we get preservation of
the heap invariant. Moreover, we can reuse lemmas that we used to
prove the heap operations correct in the correctness proofs of our
heapmap operations. The refinement relation maps the list of keys
to their corresponding values. Moreover, it ensures integrity of our
implementation, i. e. the list of keys contains exactly the keys of the
map, without duplicates:

hmh α (pq,m) ≡ map (the o m) h
hmh invar (pq,m) ≡ distinct pq ∧ set pq = dom m
hmh rel ≡ br hmh α hmh invar

Additionally, we define a refinement relation between heapmaps and
the priority map interface:

hm1 α (pq,m) ≡ m
hm1 invar (pq,m) ≡ hmh invar (pq,m)

∧ h.heap1 invar (hmh α (pq,m))
hm1 rel ≡ br hm1 α hm1 invar

Note that we prefix operations from the heap implementation with
,,h.”. The invariant combines both the structural integrity of our
implementation hmh invar, and the heap property of the abstracted
heap. Note that this splitting of invariants is necessary, as we want
to show refinements between the basic operations on heapmaps and
heaps, which do not preserve the heap invariant, but must preserve
the structural integrity of our implementation. For example, the
implementation of the append operation should append an entry
to the heap, and update the map accordingly. However, in order to
restore the heap property, a subsequent swim operation is required.

Next, we define the basic operations on heapmaps, and show
that they refine the corresponding basic operations on heaps. For
example, we define the exchange operation as:

exch op (pq,m) i j ≡ assert (i>0 ∧ j>0 ∧ hmh invar (pq,m));
pq← lst op swap pq (i − 1) (j − 1); return (pq,m)

Then, we show the following refinement theorem (note that
h.exch op is the corresponding operation on heaps):

(exch op,h.exch op): hmh rel→ nat rel→ nat rel→ hmh rel

Additionally, we need to show what effect the operations have
on the abstraction to priority maps. For exch op we show that it does
not change the abstraction to priority maps. Note that we cannot get
this information from the relation to the h.exch operation, as we do
not see the keys on this abstraction level, but only a list of values.

After we have defined the basic operations, we implement swim
and sink. Their refinement proof is straightforward, as they only use
the basic operations, for which we have already shown refinement.
The proof that they preserve the abstraction to priority maps is
also straightforward, using the already proved facts about the basic
operations.

Finally, we have to implement the priority map interface. The
refinement is shown wrt. the hm1 rel relation, which also contains
the heap invariant. However, as the heapmap operations relate to
heap operations, we can reuse the lemmas we have proved for the
heap operations. This proof principle is formalized as follows:

lemma heapmap nres relI′:
assumes 1: (hm,h): hmh rel
assumes 2: h ≤ spec h.heap1 invar
assumes 3: hm ≤n spec (λhm′. return (hm1 α hm′) ≤ m)
shows (hm, m): hm1 rel

Intuitively, the lemma states that, if (1) the heapmap operation hm
is related to a heap operation h, which (2) ensures the heap property,
and moreover, (3) assuming that hm does not fail, its result abstracted
to maps is described by priority map operation m, then hm is related
to m.

Note that this formulation makes it easy to transport assertions
from the heap level to the heapmap level (in the proof of assumption
(1)). These can then be assumed when proving correct behavior
wrt. the map abstraction (3). However, assertions newly introduced
on the heapmap level have to be proved in the refinement proof
(1), although one might want to prove them in (3). As we did not
encounter such a case in our implementation, we did not investigate
more powerful alternative proof principles, but leave this to future
research.

4.2.3 Implementation with Arrays
The implementation of heapmaps again uses stepwise refinement:
We first refine the map to a list of values, restricting the keys to
natural numbers less than N . Checking whether a key is contained
in the map is done by checking whether it is contained in the heap.
The refinement relation is:

hm2 α (pq,ml) ≡ (pq,λk. if k∈set pq then Some (ml!k) else None)
hm2 invar N (pq,ml) ≡ hmh invar (hm α (pq,ml))
∧ set pq ⊆ {0..<N} ∧ (length ml = N)

hm2 rel N ≡ br hm2 α (hm2 invar N)

Note that we only have to implement the basic operations for this
intermediate refinement step. In a second step, we implement the
first list by two arrays and a length counter, the first array holding
the heap, and the second array holding the indices of the keys in the

heap, or N if the key is not in the heap6. We call the corresponding
relation hm3 rel.

Note that, for the implementation of the heap list by two arrays,
we reuse an implementation of the list interface, which we have
developed independently (again, using stepwise refinement and the
msl implementation).

After we have combined the two refinement steps for the basic
operations, we obtain a refinement wrt. the relation:

hm32 rel N ≡ hm3 rel N O hm2 rel N

The other operations are transferred automatically over this relation,
resulting in a complete implementation of heapmap. Combining
these refinement lemmas with the refinement of heapmap to priority
map, we obtain a priority map implementation wrt. the relation:

hm321 rel N ≡ hm32 rel N O hm1 rel

Finally, we compose the implementation with parametricity lemmas
on the priority map interface, to obtain a final implementation wrt.
the relation:

〈K,V,P〉hm rel N ≡ hm321 rel N O 〈K,V,P〉prio map rel

where K, V , P are the refinement relations for the keys, values,
and priorities. However, the last refinement comes with some re-
strictions: As we use equality on keys and comparison on priorities
in the specification of priority maps, K and P have to preserve
these operations. Moreover, we have to specify a new prio′ func-
tion, which refines the original one. Finally, for the fixed capacity
implementation, K has to preserve comparison with a maximum
size. Although we have proved the parametricity lemmas in this gen-
erality, in practice, we use the constraints K ⊆ Id, V = P = Id,
and prio′ = prio. This is sufficient for our examples, and there
are nice syntactic rules to discharge such constraints automatically
during the synthesis process.

4.3 Reality Check: Dijkstra’s Algorithm
In the last section we have described our implementation of priority
maps by the heapmap data structure. Apart from stepwise refinement
and a small set of basic operations, we also used refinement
techniques to reuse results from the already verified heap data
structure.

In this section, we present an application of our heapmap data
structure: We use it as priority map data structure for Dijkstra’s
algorithm [6]. Recall that Dijkstra’s algorithm iteratively updates a
distance map, using a priority queue to select a node with current
minimal distance. After processing a node, the minimal distances of
its neighbors may change. This requires a decrease-key operation —
exactly what is provided by our priority map interface.

We have used Dijkstra’s algorithm as an example for Sepref
already in [13]: From an existing functional implementation [19],
Sepref can automatically synthesize an imperative implementation.
However, we only had a functional heap data structure at hand,
which was rather slow. Here we describe what was required to set
up the synthesis with our imperative heapmap data structure.

The main challenge is the fixed capacity of our heapmap imple-
mentation, which must be initialized on construction. Here, we use
the number of nodes in the input graph. However, originally, we
refined the nodes, which are represented by natural numbers, by
the identity relation. This, however, does not carry enough infor-
mation to prove that the node numbers are small enough to fit into
the heapmap. One solution is to modify the original algorithm by
adding assertions of the form v ∈ V , whenever a node v is accessed.

6 As we use natural numbers, we could not use −1 to denote non-existing
keys, which would be more standard.

These assertions have to be proved in the correctness proof of the
algorithm, and can be assumed during the refinement proof.

However, as we want to avoid implementation specific mod-
ifications to the abstract algorithm, we choose an alternative
solution: We strengthen the refinement relation for nodes to
node rel N ≡ {(u,u). u<N}. As nodes are not changed by Dijk-
stra’s algorithm, but just stored and retrieved7, this only requires
to change the refinement of our graph implementation accordingly,
which is straightforward.

With this setup, the Sepref tool automatically synthesizes an
imperative implementation of the abstract monadic version of
Dijkstra’s algorithm. It creates a constant dijkstra imp, and the
theorem:

(dijkstra imp N, mdijkstra): [λG v0. Dijkstra G v0]

(〈Id〉graph rel N)k → (node rel N)k → drmap2 rel N

The precondition Dijkstra is the precondition for Dijkstra’s
algorithm, i. e. the graph must be well-formed and finite, the start
node must be a node of the graph, and the weights must not be
negative. The relation 〈Id〉graph rel N denotes the implementation
of graphs with N nodes numbered from 0 . . . < N and weights
refined by Id. The relation drmap2 rel N is the relation for the result
of Dijkstra’s algorithm, basically a map from nodes to shortest paths
and their weights. Note that the constant mdijkstra, which we used as
starting point of refinement, is, itself, a refined version of Dijkstra’s
algorithm. We have:

(mdijkstra, shortest path map):
[λG v0. Dijkstra G v0] Id→ Id→ drmap1 rel

Here, drmap1 rel removes the weights from the shortest paths, such
that we get a map from nodes to paths, and shortest path map is the
specification of a correct map, i. e. one that associates exactly the
reachable nodes to shortest paths.

The combination of these lemmas still contains the precondition
Dijkstra. However, our graph implementation can only represent
finite graphs, and the well-formedness is already contained in the
refinement relation graph rel. Exploiting this information, it is
straightforward to prove the following correctness theorem for the
implementation of Dijkstra’s algorithm:

(dijkstra imp N, shortest path map):
[λG v0. v0 ∈ nodes G ∧ (∀(,w,)∈edges G. 0≤w)]

(graph rel N Id)k → (node rel N)k → drmap rel N

where drmap rel N ≡ drmap2 rel N O drmap1 rel.

4.4 Benchmarks
We have benchmarked our heapmap implementation, as well as
our implementation of Dijkstra’s algorithm, against the reference
implementations from [23] and the purely functional implementation
based on 2-3-finger trees [8, 18] that we originally used. The results
are shown in Tables 1 and 2.

For the heapmap benchmark, we have created a heapmap of
capacity N , inserted N random values at keys from 0 to N − 1,
changed all keys to a new random value, and then flushed the
queue by repeatedly removing minimal values. Our imperative
implementation is roughly a factor of 4 faster than the purely
functional one. This is a clear efficiency improvement for verified
priority map data structures. However, depending onN , it is between
2 and 5 times slower than the unverified Java implementation. We
have not yet fully investigated the reason for that. First profiling
results indicate that the generated code wastes too much time on
arbitrary precision integers, which seems to be a problem with the

7 In other words: the algorithm is parametric in the node type.

N Fun Imp/HOL Java
10000 72 18 9

100000 947 195 38
1000000 12816 2790 873

10000000 162893 39118 15487

Table 1: Heapmap Benchmark. (Times in ms)

Test Fun Imp/HOL java
cl1300 240 127 23
cl1500 325 171 29

medium 1 � 1 2
large 38746 4068 1218

Table 2: Dijkstra Benchmark. (Times in ms)

code generator. We get similar results when benchmarking Dijkstra’s
algorithm. Here, the test inputs are complete graphs with random
weights over N nodes (clN) and the medium and large examples
from [23].

5. Conclusion
In this paper we have presented a method for stepwise refinement
based development of verified imperative data structures, and il-
lustrated our methods via the implementation of the priority map
interface by a heapmap data structure.

We have presented techniques to modularly build complex data
structures from simpler ones. Using the infrastructure of our Sepref
tool, we could automatically synthesize the implementations from
abstract versions of the operations.

In our heapmap case study, we presented a quite complex set-
ting for our techniques: On the abstract heapmap data structure, we
identify a set of basic operations, on which all other operations can
be built. This allows us to automatically derive implementations of
the other operations from implementations of the basic operations.
To implement the basic operations, we use stepwise refinement,
decomposing the abstract heapmap data structure in simpler data
structures first, and then reusing existing implementations of these
simpler data structures. Finally, we related the heapmap data struc-
ture to an independently verified heap data structure. Although we
cannot express priority maps using priority queues, we still could
reuse parts of the correctness proof for heaps (implementing priority
queues) in the proof for heapmaps (implementing priority maps).
Finally, we added support for refinement of the element types, by
exploiting parametricity of the priority map interface.

The whole verification process was supported by the Sepref
tool [13], which automatically replaces abstract by concrete op-
erations, and the FCOMP tool, which composes the refinement
theorems of multiple steps.

The techniques illustrated in this paper are not specific to
heapmaps, but work for all imperative data structures which have
nice abstract representations inside Isabelle/HOL.

5.1 Related Work
There are tools that generate verification conditions for different
programming languages, and use interactive or automated theorem
provers to discharge them, e. g. [5, 7, 10]. One example is the Jahob
tool [10, 11], which combines several analysis and proving tools,
including Isabelle/HOL, to prove properties about Java programs. It
uses data abstraction as a refinement technique, to reason about data
structures in terms of their abstract interfaces. The main differences
to our approach are that Jahob and other VCG based tools use a
bottom-up approach, i. e. the final implementation (Java program)

is developed first, then annotated with specification information,
and proved correct. In contrast, we develop the abstract algorithm
first, and then refine it, in possibly multiple steps, towards the
final implementation. Thereby, we may perform more complex
refinements than just a single data refinement step, which roughly
corresponds to the data abstraction available in Jahob.

Another important difference is the trusted code base, i. e. the
code that is critical to the correctness of the tool. Apart from
the compiler, the machine, and the operating system, our tool’s
correctness only depends on the small logical inference kernel of
Isabelle, the axiom scheme of HOL, and the correctness of the
Isabelle Code Generator, which generates the final source text. In
contrast, VCG based tools like Jahob usually combine different tools
to discharge the VCs, and the VCG itself has to correctly map the
target language’s semantics, which is usually more complex than
the mapping done by the Isabelle/HOL code generator.

The heap data structure has been used as an example in several
program verification tools: e. g. heapsort is verified in at least [1, 10,
20]. A top-down refinement based approach to heap and selection
sort is presented in [20]. However, their refinement is focused to
derive the sorting algorithm from some very generic specification.
Their refinement stops at an abstract tree data structure, while we
prove correctness of a heap data structure embedded in a list directly,
and focus our refinement on the implementation.

A priority queue implemented by a heap in OCaml has been
verified using characteristic formulas [5], a bottom-up approach
to verify imperative programs. We are not aware of previous
verifications of the (more complex) heapmap data structure.

The Transfer and Lifting tool [9] performs a task similar to our
Sepref tool: It transports definitions and lemmas along relations.
However, it is restricted to purely functional programs, and the
concrete type is constructed by renaming the top-level type name of
the abstract type.

5.2 Future Work
One direction is to explore how our techniques work with data
structures that rely on pointer modification, like balanced trees. As
pointers have no abstract counterpart in Isabelle/HOL, our approach
of reusing simple data structures for the implementation of more
complex ones has to be adapted if pointers need to be visible on the
abstract level.

Another direction of future work is to improve the available
automation. For example, capturing the grouping of operations into
interfaces and implementations within a tool would allow us to
perform operations like composition of refinements for whole sets
of operations at once, avoiding to repeat boilerplate code for each
single operation.

Finally, we have observed a great effect of low-level peephole
optimizations on the generated Imperative/HOL programs: Some
simple inlining and deforestation that we manually performed on our
heapmap implementation (inside the logic!) already had a significant
impact on performance. We would like to systematically explore
and automate those optimizations.

References
[1] R.-J. Back and J. Eriksson. An exercise in invariant-based programming

with interactive and automatic theorem prover support. In THedu,
volume 79 of EPTCS, pages 29–48, 2011.

[2] R.-J. Back and J. von Wright. Refinement Calculus — A Systematic
Introduction. Springer, 1998.

[3] L. Bulwahn, A. Krauss, F. Haftmann, L. Erkök, and J. Matthews.
Imperative functional programming with Isabelle/HOL. In TPHOL,
volume 5170 of LNCS, pages 134–149. Springer, 2008.

[4] C. Calcagno, P. O’Hearn, and H. Yang. Local action and abstract
separation logic. In LICS 2007, pages 366–378, July 2007.

[5] A. Charguéraud. Characteristic formulae for the verification of impera-
tive programs. In ICFP, pages 418–430. ACM, 2011.

[6] E. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, 1959.

[7] J.-C. Filliâtre and A. Paskevich. Why3 – Where Programs Meet Provers.
In ESOP, volume 7792. Springer, Mar. 2013.

[8] R. Hinze and R. Paterson. Finger trees: A simple general-purpose data
structure. Journal of Functional Programming, 16(2):197–217, 2006.

[9] B. Huffman and O. Kunčar. Lifting and transfer: A modular design for
quotients in Isabelle/HOL, 2012. Isabelle Users Workshop 2012.

[10] V. Kuncak. Modular Data Structure Verification. PhD thesis, EECS
Department, Massachusetts Institute of Technology, February 2007.

[11] V. Kuncak and M. Rinard. An overview of the Jahob analysis system:
Project goals and current status. In NSF Next Generation Software
Workshop, 2006.

[12] P. Lammich. Automatic data refinement. In ITP, volume 7998 of LNCS,
pages 84–99. Springer, 2013.

[13] P. Lammich. Refinement to Imperative/HOL. In ITP, volume 9236 of
LNCS, pages 253–269. Springer, 2015.

[14] P. Lammich and A. Lochbihler. The Isabelle Collections Framework.
In Proc. of ITP, volume 6172 of LNCS, pages 339–354. Springer, 2010.

[15] P. Lammich and R. Meis. A separation logic framework for imperative
hol. Archive of Formal Proofs, Nov. 2012. http://afp.sf.net/
entries/Separation_Logic_Imperative_HOL.shtml, Formal
proof development.

[16] P. Lammich and T. Tuerk. Applying data refinement for monadic
programs to Hopcroft’s algorithm. In Proc. of ITP, volume 7406 of
LNCS, pages 166–182. Springer, 2012.

[17] R. Meis, F. Nielsen, and P. Lammich. Binomial heaps and skew bi-
nomial heaps. Archive of Formal Proofs, Oct. 2010. http://afp.
sf.net/entries/Binomial-Heaps.shtml, Formal proof develop-
ment.

[18] B. Nordhoff, S. Körner, and P. Lammich. Finger trees. Archive
of Formal Proofs, Oct. 2010. http://afp.sf.net/entries/
Finger-Trees.shtml, Formal proof development.

[19] B. Nordhoff and P. Lammich. Formalization of Dijkstra’s algo-
rithm. Archive of Formal Proofs, Jan. 2012. http://afp.sf.net/
entries/Dijkstra_Shortest_Path.shtml, Formal proof devel-
opment.

[20] D. Petrovic. Verification of selection and heap sort using lo-
cales. Archive of Formal Proofs, Feb. 2014. http://afp.sf.
net/entries/Selection_Heap_Sort.shtml, Formal proof devel-
opment.

[21] J. C. Reynolds. Types, abstraction and parametric polymorphism. In
IFIP Congress, pages 513–523, 1983.

[22] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proc of. Logic in Computer Science (LICS), pages 55–74.
IEEE, 2002.

[23] R. Sedgewick and K. Wayne. Algorithms. Addison-Wesley, 2011. 4th
edition.

[24] C. Traut and L. Noschinski. Pattern-based subterm selection in isabelle.
In Proceedings of Isabelle Workshop 2014, 2014.

[25] N. Wirth. Program development by stepwise refinement. ACM,
14(4):221–227, Apr. 1971.

http://afp.sf.net/entries/Separation_Logic_Imperative_HOL.shtml
http://afp.sf.net/entries/Separation_Logic_Imperative_HOL.shtml
http://afp.sf.net/entries/Binomial-Heaps.shtml
http://afp.sf.net/entries/Binomial-Heaps.shtml
http://afp.sf.net/entries/Finger-Trees.shtml
http://afp.sf.net/entries/Finger-Trees.shtml
http://afp.sf.net/entries/Dijkstra_Shortest_Path.shtml
http://afp.sf.net/entries/Dijkstra_Shortest_Path.shtml
http://afp.sf.net/entries/Selection_Heap_Sort.shtml
http://afp.sf.net/entries/Selection_Heap_Sort.shtml

	Introduction
	Contributions

	Prerequisites
	General Notations
	The Isabelle Refinement Framework
	Imperative Programs
	The Sepref Tool
	Composition and Nested Refinement

	Implementing Data Structures
	Interfaces
	Implementations
	Fixed Capacity Implementations

	Reusing Data Structures
	FCOMP Tool

	Exploiting Parametricity

	Case Study: Heap and Heapmap
	Heaps
	Priority Queue Interface
	Implementation on Lists
	Implementation with Arrays

	Heapmaps
	Priority Map Interface
	Implementation with List and Map
	Implementation with Arrays

	Reality Check: Dijkstra's Algorithm
	Benchmarks

	Conclusion
	Related Work
	Future Work

