
Isabelle’s Metalogic:
Formalization and Proof Checker?

Tobias Nipkow[0000−0003−0730−515X] and Simon Roßkopf[0000−0002−7955−8749]

Technical University of Munich, Germany

Abstract. Isabelle is a generic theorem prover with a fragment of higher-
order logic as a metalogic for defining object logics. Isabelle also provides
proof terms. We formalize this metalogic and the language of proof terms
in Isabelle/HOL, define an executable (but inefficient) proof term checker
and prove its correctness w.r.t. the metalogic. We integrate the proof
checker with Isabelle and run it on a range of logics and theories to
check the correctness of all the proofs in those theories.

1 Introduction

One of the selling points of proof assistants is their trustworthiness. Yet in prac-
tice soundness problems do come up in most proof assistants. Harrison [11]
distinguishes errors in the logic and errors in the implementation (and cites ex-
amples). Our work contributes to the solution of both problems for the proof
assistant Isabelle [30]. Isabelle is a generic theorem prover: it implements M, a
fragment of intuitionistic higher-order logic, as a metalogic for defining object
logics. Its most developed object logic is HOL and the resulting proof assistant
is called Isabelle/HOL [25,24]. The latter is the basis for our formalizations.

Our first contribution is the first complete formalization of Isabelle’s meta-
logic. Thus our work applies to all Isabelle object logics, e.g. not just HOL but
also ZF. Of course Paulson [29] describes M precisely, but only on paper. More
importantly, his description does not yet cover polymorphism and type classes,
which were introduced later [26]. The published account of Isabelle’s proof terms
[4] is also silent about type classes. Yet type classes are a significant complication
(as, for example, Kunčar and Popescu [18] found out).

Our second contribution is a verified (againstM) and executable checker for
Isabelle’s proof terms. We have integrated the proof checker with Isabelle. Thus
we can guarantee that every theorem whose proof our proof checker accepts is
provable in our definition of M. So far we are able to check the correctness of
moderatly sized theories across the full range of logics implemented in Isabelle.

Although Isabelle follows the LCF-architecture (theorems that can only be
manufactured by inference rules) it is based on an infrastructure optimized for

? Supported by Wirtschaftsministerium Bayern under DIK-2002-0027//DIK0185/03
and DFG GRK 2428 ConVeY

2 T. Nipkow and S. Roßkopf

performance. In particular, this includes multithreading, which is used in the ker-
nel and has once lead to a soundness issue. Therefore we opt for the “certificate
checking” approach (via proof terms) instead of verifying the implementation.

This is the first work that deals directly with what is implemented in Isabelle
as opposed to a study of the metalogic that Isabelle is meant to implement. In-
stead of reading the implementation you can now read and build on the more
abstract formalization in this paper. The correspondence of the two can be es-
tablished for each proof by running the proof checker.

Our formalization reflects the ML implementation of Isabelle’s terms and
types and some other data structures. Thus a few implementation choices shine
through, e.g. De Bruijn indices. This is necessary because we want to integrate
our proof checker as directly as possible with Isabelle, with as little unverified
glue code as possible, for example no translation between De Bruijn indices and
named variables. We refer to this as our intentional implementation bias. In prin-
ciple, however, one could extend our formalization with different representations
(e.g. named terms) and prove suitable isomorphisms.

Our work is purely proof theoretic; semantics is out of scope.
The formalization (and more) has been submitted as supplementary material.

1.1 Related Work

Harrison [11] was the first to verify some of HOL’s metatheory and an imple-
mentation of a HOL kernel in HOL itself. Kumar et al. [13] formalized HOL
including definition principles, proved its soundness and synthesized a verified
kernel of a HOL prover down to the machine language level. Abrahamsson [2]
verified a proof checker for the OpenTheory [12] proof exchange format for HOL.

Wenzel [37] showed how to interpret type classes as predicates on types. We
follow his approach of reflecting type classes in the logic but cannot remove them
completely because of our intentional implementation bias (see above). Kunčar
and Popescu [15,16,17,18] focus on the subtleties of definition principles for HOL
with overloading and prove that under certain conditions, type and constant
definitions preserve consistency. Åman Pohjola et al. [1] formalize [15,18].

Adams [3] presents HOL Zero, a basic theorem prover for HOL that addresses
the problem of how to ensure that parser and pretty-printer do not misrepresent
formulas.

Let us now move away from Isabelle and HOL. Sozeau et al. [35] present the
first implementation of a type checker for the kernel of Coq that is proved correct
in Coq with respect to a formal specification. Carneiro [6] has implemented a
highly performant proof checker for a multi-sorted first order logic and is in the
process of verifying it in its own logic.

We formalize a logic with bound variables, and there is a large body of related
work that deals with this issue (e.g. [36,21,7]) and a range of logics and systems
with special support for handling bound variables (e.g. [32,33,34]). We found
that De Bruijn indices worked reasonably well for us.

Isabelle’s Metalogic: Formalization and Proof Checker 3

2 Preliminaries

Isabelle types are built from type variables, e.g. ′a, and (postfix) type construc-
tors, e.g. ′a list ; the function type arrow is ⇒. Isabelle also has a type class
system explained later. The notation t :: τ means that term t has type τ . Isa-
belle/HOL provides types ′a set and ′a list of sets and lists of elements of type
′a. They come with the following vocabulary: function set (conversion from lists
to sets), (#) (list constructor), (@) (append), |xs| (length of list xs), xs ! i (the
ith element of xs starting at 0), list-all2 p [x 1, . . ., xm] [y1, . . ., yn] = (m = n
∧ p x 1 y1 ∧ . . . ∧ p xn yn) and other self-explanatory notation.

The Field of a relation r is the set of all x such that (x ,) or (,x) is in r.
There is also the predefined data type

datatype ′a option = None | Some ′a

The type τ1 ⇀ τ2 abbreviates τ1 ⇒ τ2 option, i.e. partial functions, which we
call maps. Maps have a domain and a range:

dom m = {a | m a 6= None} ran m = {b | ∃ a. m a = Some b}.

Logical equivalence is written = instead of ←→.

3 Types and Terms

A name is simply a string. Variables have type var ; their inner structure is
immaterial for the presentation of the logic.

The logic has three layers: terms are classified by types as usual, but in
addition types are classified by sorts. A sort is simply a set of class names. We
discuss sorts in detail later.

Types (typically denoted by T, U, . . .) are defined like this:

datatype typ = Ty name (typ list) | Tv var sort

where Ty κ [T 1,...,Tn] represents the Isabelle type (T 1,. . .,Tn) κ and Tv a S
represents a type variable a of sort S — sorts are directly attached to type
variables. The notation T → U is short for Ty ”fun” [T ,U], where ”fun” is the
name of the function type constructor.

Isabelle’s terms are simply typed lambda terms in De Bruijn notation:

datatype term = Ct name typ | Fv var typ | Bv nat | Abs typ term | (·) term term

A term (typically r, s, t, u . . .) can be a typed constant Ct c T or free variable
Fv v T , a bound variable Bv n (a De Brujin index), a typed abstraction Abs T t
or an application t · u.

The term-has-type proposition has the syntax Ts `τ t : T where Ts is a list
of types, the context for the type of the bound variables.

`τ Ct T : T `τ Fv T : T
i < |Ts|

Ts `τ Bv i : Ts ! i

4 T. Nipkow and S. Roßkopf

T # Ts `τ t : T ′

Ts `τ Abs T t : T → T ′

Ts `τ u : U Ts `τ t : U → T

Ts `τ t · u : T

We define `τ t : T = [] `τ t : T.
Function fv :: term ⇒ (var × typ) set collects the free variables in a term.

Because bound variables are indices, fv t is simply the set of all (v , T) such that
Fv v T occurs in t. The type is an integral part of a variable.

A type substitution is a function % of type var ⇒ sort ⇒ typ. It assigns a type
to each type variable and sort pair. We write % $$ T or % $$ t for the overloaded
function which applies such a type substitution to all type variables (and their
sort) occurring in a type or term. The type instance relation is defined like this:

T 1 . T 2 = (∃ %. % $$ T 2 = T 1)

We also need to β-contract a term Abs T t · u to something like “t with
Bv 0 replaced by u”. We define a function subst-bv such that subst-bv u t is
that β-contractum. The definition of subst-bv is shown in the Appendix and can
also be found in the literature (e.g. [23]).

In order to abstract over a free (term) variable there is a function bind-fv (v ,
T) t that (roughly speaking) replaces all occurrences of Fv v T in t by Bv 0.
Again, see the Appendix for the definition. This produces (if Fv v T occurs in
t) a term with an unbound Bv 0. Function Abs-fv binds it with an abstraction:

Abs-fv v T t = Abs T (bind-fv (v , T) t)

While this section described the syntax of types and terms, they are not
necessarily wellformed and should be considered pretypes/preterms. The well-
formedness checks are described later.

4 Classes and Sorts

Isabelle has a built-in system of type classes [22] as in Haskell 98 except that
class constraints are directly attached to variable names: our Tv a [C ,D ,. . .]
corresponds to Haskell’s (C a, D a, ...) => ... a A sort is Isabelle’s
terminology for a set of (class) names, e.g. {C ,D ,. . .}, which represent a con-
junction of class constraints. In our work, variables S, S ′ etc. stand for sorts.

Apart from the usual application in object logics, type classes also serve an
important metalogical purpose: they allow us to restrict, for example, quantifi-
cation in object logics to object-level types and rule out meta-level propositions.

Isabelle’s type class system was first presented in a programming language
context [28,27]. We give the first machine-checked formalization. The central
data structure is a so-called order-sorted signature. Intuitively, it is comprised
of a set of class names, a partial subclass ordering on them and a set of type
constructor signatures. A type constructor signature κ :: (S 1, . . ., Sk) c for a
type constructor κ states that applying κ to types T 1, . . ., T k such that T i has
sort S i (defined below) produces a type of class c. Formally:

Isabelle’s Metalogic: Formalization and Proof Checker 5

type synonym osig = ((name × name) set × (name ⇀ (class ⇀ sort list)))

To explain this formalization we start from a pair (sub,tcs) :: osig and recover
the informal order-sorted signature described above. The set of classes is simply
the Field of the sub relation. The tcs component represents the set of all type
constructor signatures κ :: (Ss) c (where Ss is a list of sorts) such that tcs κ =
Some dm and dm c = Some Ss. Representing κ :: (Ss) c as a triple, we define

TCS = {(κ, Ss, c) | ∃ domf . tcs κ = Some domf ∧ domf c = Some Ss}

TCS is the translation of tcs, the data structure close to the implementation,
to an equivalent but more intuitive version TCS that is close to the informal
presentations in the literature.

The subclass ordering sub can be extended to a subsort ordering as follows:

S1 ≤sub S2 = (∀ c2∈S2. ∃ c1∈S1. c1 ≤sub c2)

The smaller sort needs to subsume all the classes in the larger sort. In particular
{c1} ≤sub {c2} iff (c1, c2) ∈ sub.

Now we can define a predicate has-sort that checks whether, in the context
of some order-sorted signature (sub,tcs), a type fulfills a given sort constraint:

S ≤sub S ′

has-sort (sub, tcs) (Tv a S) S ′

tcs κ = Some dm
∀ c∈S . ∃Ss. dm c = Some Ss ∧ list-all2 (has-sort (sub, tcs)) Ts Ss

has-sort (sub, tcs) (Ty κ Ts) S

The rule for type variables uses the subsort relation and is obvious. A type (T 1,
. . ., Tn) κ has sort {c1, . . .} if for every ci there is a signature κ :: (S 1, . . ., Sn)
ci and has-sort (sub, tcs) T j S j for j = 1 , . . ., n.

We normalize a sort by removing “superfluous” class constraints, i.e. retain-
ing only those classes that are not subsumed by other classes. This gives us
unique representatives for sorts which we call normalized :

normalize-sort sub S = {c ∈ S | ¬ (∃ c ′∈S . (c ′, c) ∈ sub ∧ (c, c ′) /∈ sub)}
normalized-sort sub S = (normalize-sort sub S = S)

We work with normalized sorts because it simplifies the derivation of efficient
executable code later on.

Now we can define wellformedness of an osig :

wf-osig (sub, tcs) = (wf-subclass sub ∧ wf-tcsigs sub tcs)

A sublass relation is wellformed if it is a partial order where reflexivity is re-
stricted to its Field. Wellformedness of type constructor signatures (wf-tcsigs) is
more complex. We describe it in terms of TCS derived from tcs (see above). The
conditions are the following:

6 T. Nipkow and S. Roßkopf

– The following property requires a) that for any κ :: (...)c1 there must be a
κ :: (...)c2 for every superclass c2 of c1 and b) coregularity which guarantees
the existence of principal types [28,10].
∀ (κ, Ss1, c1)∈TCS .
∀ c2. (c1, c2) ∈ sub −→

(∃Ss2. (κ, Ss2, c2) ∈ TCS ∧ list-all2 (λS 1 S 2. S 1 ≤sub S 2) Ss1 Ss2)
– A type constructor must always take the same number of argument types:
∀κ Ss1 c1 Ss2 c2.

(κ, Ss1, c1) ∈ TCS ∧ (κ, Ss2, c2) ∈ TCS −→ |Ss1| = |Ss2|
– Sorts must be normalized and must exists in sub:
∀ (κ, Ss, c)∈TCS . ∀S∈set Ss. wf-sort sub S
where wf-sort sub S = (normalized-sort sub S ∧ S ⊆ Field sub)

These conditions are used in a number of places to show that the type system
is well behaved. For example, has-sort is upward closed:

wf-osig (sub, tcs) ∧ has-sort (sub, tcs) T S ∧ S ≤sub S ′

−→ has-sort (sub, tcs) T S ′

5 Signatures

A signature consist of a map from constant names to their (most general) types, a
map from type constructor names to their arities, and an order-sorted signature:

type synonym signature = (name ⇀ typ) × (name ⇀ nat) × osig

The three projection functions are called const-type, type-arity and osig. We now
define a number of wellformedness checks w.r.t. a signature Σ. We start with
wellformedness of types, which is pretty obvious:

type-arity Σ κ = Some |Ts| ∀T∈set Ts. wf-type Σ T

wf-type Σ (Ty κ Ts)

wf-sort (subclass (osig Σ)) S

wf-type Σ (Tv a S)

Wellformedness of a term essentially just says that all types in the term are
wellformed and that the type T ′ of a constant in the term must be an instance
of the type T of that constant in the signature: T ′ . T.

wf-type Σ T

wf-term Σ (Fv v T)
wf-term Σ (Bv n)

const-type Σ s = Some T wf-type Σ T ′ T ′ . T

wf-term Σ (Ct s T ′)

wf-term Σ t wf-term Σ u

wf-term Σ (t · u)

wf-type Σ T wf-term Σ t

wf-term Σ (Abs T t)

Isabelle’s Metalogic: Formalization and Proof Checker 7

These rules only check whether a term conforms to a signature, not that the
contained types are consistent. Combining wellformedness and `τ yields well-
typedness of a term:

wt-term Σ t = (wf-term Σ t ∧ (∃T . `τ t : T))

Wellformedness of a signature Σ = (ctf , arf , oss) where oss = (sub, tcs) is
defined as follows:

wf-sig Σ =
((∀T∈ran ctf . wf-type Σ T) ∧ wf-osig oss ∧ dom tcs = dom arf ∧
(∀κ dm. tcs κ = Some dm −→ (∀Ss∈ran dm. arf κ = Some |Ss|)))

In words: all types in ctf are wellformed, oss is wellformed, the type constructors
in tcs are exactly those that have an arity in arf, for every type constructor
signature (κ, Ss,) in tcs, κ has arity |Ss|.

6 Logic

Isabelle’s metalogic M is an extension of the logic described by Paulson [29]. It
is a fragment of intuitionistic higher-order logic. The basic types and connectives
of M are the following:

Concept Representation Abbreviation
Type of propositions Ty ”prop” [] prop
Implication Ct ”imp” (prop → prop → prop) =⇒
Universal quantifier Ct ”all” ((T → prop) → prop)

∧
T

Equality Ct ”eq” (T → T → prop) ≡T

The type subscripts of
∧

and ≡ are dropped in the text if they can be inferred.
Readers familiar with Isabelle syntax must keep in mind that for readability

we use the symbols
∧

, =⇒ and ≡ for the encodings of the respective symbols
in Isabelle’s metalogic. We avoid the corresponding metalogical constants com-
pletely in favour of HOL’s ∀ , −→, = and inference rule notation.

The provability judgment of M is of the form Θ,Γ ` t where Θ is a theory,
Γ (the hypotheses) is a set of terms of type prop and t a term of type prop.

A theory is a pair of a signature and a set of axioms:

type synonym theory = signature × term set

The projection functions are sig and axioms. We extend the notion of wellformed-
ness from signatures to theories:

wf-theory (Σ, axs) =
(wf-sig Σ ∧ (∀ p∈axs. wt-term Σ p ∧ `τ p : prop) ∧ is-std-sig Σ ∧ eq-axs ⊆ axs)

The first two conjuncts need no explanation. Predicate is-std-sig (not shown)
requires the signature to have certain minimal content: the basic types (→, prop)
and constants (≡,

∧
, =⇒) ofM and the additional types and constants for type

8 T. Nipkow and S. Roßkopf

class reasoning from Section 6.3. Our theories also need to contain a minimal set
of axioms. The set eq-axs is an axiomatic basis for equality reasoning and will
be explained in Section 6.2.

We will now discuss the inference system in three steps: the basic inference
rules, equality and type class reasoning.

6.1 Basic Inference Rules

The axiom rule states that wellformed type-instances of axioms are provable:

wf-theory Θ t ∈ axioms Θ wf-inst Θ %

Θ,Γ ` % $$ t

where % :: var ⇒ sort ⇒ typ is a type substitution and $$ denotes its applica-
tion (see Section 3). The types substituted into the type variables need to be
wellformed and conform to the sort constraint of the type variable:

wf-inst (Σ, axs) % =
(∀ v S . % v S 6= Tv v S −→ has-sort (osig Σ) (% v S) S ∧ wf-type Σ (% v S))

The conjunction only needs to hold if % actually changes something, i.e. if % v S
6= Tv v S. This condition is not superfluous because otherwise has-sort oss (Tv
v S) S and wf-type Σ (Tv v S) only hold if S is wellformed w.r.t Σ.

Note that there are no extra rules for general instantiation of type or term
variables. Type variables can only be instantiated in the axioms. Term instanti-
ation can be performed using the forall introduction and elimination rules.

The assumption rule allows us to prove terms already in the hypotheses:

wf-term (sig Θ) t `τ t : prop t ∈ Γ
Θ,Γ ` t

Both
∧

and =⇒ are characterized by introduction and elimination rules:

wf-theory Θ Θ,Γ ` t (x , T) /∈ FV Γ wf-type (sig Θ) T

Θ,Γ `
∧

T (Abs-fv x T t)

Θ,Γ `
∧

T (Abs T t) `τ u : T wf-term (sig Θ) u

Θ,Γ ` subst-bv u t

wf-theory Θ Θ,Γ ` u wf-term (sig Θ) t `τ t : prop

Θ,Γ − {t} ` t =⇒ u

Θ,Γ 1 ` t =⇒ u Θ,Γ 2 ` t

Θ,Γ 1 ∪ Γ 2 ` u

where FV Γ = (
⋃

t∈Γ fv t).

Isabelle’s Metalogic: Formalization and Proof Checker 9

6.2 Equality

Most rules about equality are not part of the inference system but are axioms
(the set eq-axs mentioned above). Consequences are obtained via the axiom rule.

The first three axioms express that ≡ is reflexive, symmetric and transitive:

x ≡ x x ≡ y =⇒ y ≡ x x ≡ y =⇒ y ≡ z =⇒ x ≡ z

The next two axioms express that terms of type prop (A and B) are equal iff
they are logically equivalent:

A ≡ B =⇒ A =⇒ B (A =⇒ B) =⇒ (B =⇒ A) =⇒ A ≡ B

The last equality axioms are congruence rules for application and abstraction:

f ≡ g =⇒ x ≡ y =⇒ (f · x) ≡ (g · y)∧
(Abs T ((f · Bv 0) ≡ (g · Bv 0))) =⇒ Abs T (f · Bv 0) ≡ Abs T (g · Bv 0)

Paulson [29] gives a slightly different congruence rule for abstraction, which
allows to abstract over an arbitrary, free x in f ,g. We are able to derive this rule
in our inference system.

Finally there are the lambda calculus rules. There is no need for α conversion
because α-equivalent terms are already identical thanks to the De Brujin indices
for bound variables. For β and η conversion the following rules are added. In
contrast to the rest of this subsection, these are not expressed as axioms.

wf-theory Θ
wt-term (sig Θ) (Abs T t) wf-term (sig Θ) u `τ u : T

Θ,Γ ` (Abs T t · u) ≡ subst-bv u t
(β)

wf-theory Θ wf-term (sig Θ) t `τ t : T → T ′

Θ,Γ ` Abs T (t · Bv 0) ≡ t
(η)

Rule (β) uses the substitution function subst-bv as explained in Section 3 (and
defined in the Appendix).

Rule (η) requires a few words of explanation. We do not explicitly require
that t does not contain Bv 0. This is already a consequence of the precondition
that `τ t : T → T ′: it implies that t is closed. For that reason it is perfectly
unproblematic to remove the abstraction above t.

6.3 Type Class Reasoning

Wenzel [37] encoded class constraints of the form “type T has class c” in the
term language as follows. There is a unary type constructor named ”itself” and
T itself abbreviates Ty ”itself” [T]. The notation TYPET itself is short for
Ct ”type” (T itself) where ”type” is the name of a new uninterpreted constant.
You should view TYPET itself as the term-level representation of type T.

Next we represent the predicate “is of class c” on the term level. For this we
define some fixed injective mapping const-of-class from class to constant names.

10 T. Nipkow and S. Roßkopf

For each new class c a new constant const-of-class c of type T itself → prop is
added. The term Ct (const-of-class c) (T itself → prop) · TYPET itself represents
the statement “type T has class c”. This is the inference rule deriving such
propositions:

wf-theory Θ
const-type (sig Θ) (const-of-class C) = Some (′a itself → prop)

wf-type (sig Θ) T has-sort (osig (sig Θ)) T {C}
Θ,Γ ` Ct (const-of-class C) (T itself → prop) · TYPET itself

This is how the has-sort inference system is integrated into the logic.

This concludes the presentation of M. We have shown some minimal sanity
properties, incl. that all provable terms are of type prop and wellformed:

Theorem 1. Θ,Γ ` t −→ `τ t : prop ∧ wf-term (sig Θ) t

The attentive reader will have noticed that we do not require unused hy-
potheses in Γ to be wellformed and of type prop. Similarly, we only require
wf-theory Θ in rules that need it to preserve wellformedness of the terms and
types involved. To restrict to wellformed theories and hypotheses we define a
top-level provability judgment that requires wellformedness:

Θ,Γ `̀ t = (wf-theory Θ ∧ (∀ h∈Γ . wf-term (sig Θ) h ∧ `τ h : prop) ∧ Θ,Γ ` t)

7 Proof Terms and Checker

Berghofer and Nipkow [4] added proof terms to Isabelle. We present an ex-
ecutable checker for these proof terms that is proved sound w.r.t. the above
formalization of the metalogic. Berghofer and Nipkow also developed a proof
checker but it was unverified and checked the generated proof terms by feeding
them back through Isabelle’s unverified inference kernel.

It is crucial to realize that all we need to know about the proof term checker
is the soundness theorem below. The internals are, from a soundness perspective,
irrelevant, which is why we can get away with sketching them informally. This
is in contrast to the logic itself, which acts like a specification, which is why we
presented in detail.

This is our data type of proof terms:

datatype proofterm = PAxm term (((var × sort) × typ) list) | PBound nat
| Abst typ proofterm | AbsP term proofterm | Appt proofterm term
| AppP proofterm proofterm | OfClass typ name | Hyp term

These proof terms are not designed to record proofs in our inference system, but
to mirror the proof terms generated by Isabelle. Nevertheless, the constructors
of our proof terms correspond roughly to the rules of the inference system. PAxm
contains an axiom and a type substitution. This substitution is encoded as an
association list instead of a function. AbsP and Abst correspond to introduction

Isabelle’s Metalogic: Formalization and Proof Checker 11

of =⇒ and
∧

, AppP and Appt correspond to the respective eliminations. Hyp
and PBound relate to the assumption rule, where Hyp refers to a free assumption
while PBound contains a De Brujin index referring to an assumption added
during the proof by an AbsP constructor. OfClass denotes a proof that a type
belongs to a given type class.

Isabelle looks at terms modulo αβη-equivalence and therefore does not save
β or η steps, while they are explicit steps in our inference system. Therefore
we have no constructors corresponding to the (β) and (η) rules. The remaining
equality axioms are naturally handled by the PAxm constructor.

In the rest of the section we discuss how to derive an executable proof checker.
Executability means that the checker is defined as a set of recursive functions that
Isabelle’s code generator can translate into one of a number of target languages,
in particular its implementation language SML [5,9,8].

Because of the approximate correspondence between proof term constructors
and inference rules, implementing the proof checker largely amounts to providing
executable versions of each inference rule, as in LCF: each rule becomes a func-
tion that checks the side conditions, and if they are true, computes the conclusion
from the premises given as arguments. The overall checker is a function

replay :: theory ⇒ proofterm ⇒ term option

In particular we need to make the inductive wellformedness checks for sorts, types
and terms, signatures and theories executable. Mostly, this amounts to providing
recursive versions of inductive definitions and proving them equivalent.

We now discuss some of the more difficult implementation steps. To model
Isabelle’s view of terms modulo αβη-equivalence, we βη normalize our terms (α-
equivalence is for free thanks to De Brujin notation) during the reconstruction
of the proof. A lengthy proof shows that this preserves provability (we do not
go into the details):

wf-theory Θ ∧ finite Γ ∧ (∀A∈Γ . wt-term (sig Θ) A ∧ `τ A : prop) ∧ Θ,Γ ` t ∧
beta-eta-norm t = Some u −→ Θ,Γ ` u

Isabelle’s code generator needs some help handling the maps used in the (order-
sorted) signatures. We provide a refinement of maps to association lists. Another
problematic point is the definition of the type instance relation (.), which con-
tains an (unbounded) existential quantifier. To make this executable, we provide
an implementation which tries to compute a suitable type substitution. In an-
other step, we refine the type substitution to an association list as well.

In the end we obtain a proof checker

check-proof Θ P p = (wf-theory Θ ∧ replay Θ P = Some p)

that checks theory Θ and checks if proof P proves the given proposition p. The
latter check is important because the Isabelle theorems that we check contain
both a proof and a proposition that the theorem claims to prove. Function check-
proof checks this claim. As one of our main results, we can prove the correctness
of our checker:

12 T. Nipkow and S. Roßkopf

Theorem 2. check-proof Θ P p −→ Θ,set (hyps P) `̀ p

The proof itself is conceptually simple and proceeds by induction over the struc-
ture of proof terms. For each proof constructor we need to show that the corre-
sponding inference rule leads to the same conclusion as its functional version used
by replay. Most of the proof effort goes into a large library of results about terms,
types, signatures, substitutions, wellformedness etc. required for the proof, most
importantly the fact that βη normalization preserve provability.

8 Size and Structure of the Formalization

All material presented so far has been formalized in Isabelle/HOL. The definition
of the inference system (incl. types, terms etc.) resides in a separate theory Core
that depends only on the basic library of Isabelle/HOL. It takes about 300 LOC
and is fairly high level and readable – we presented most of it. This is at least an
order or magnitude smaller than Isabelle’s inference kernel (which is not clearly
delineated) – of course the latter is optimized for performance. Its abstract type
of theorems alone takes about 2,500 LOC, not counting any infrastructure of
terms, types, unification etc.

The whole formalization consists of 10,000 LOC. The main components are:

– Almost half the formalization (4,700 LOC) is devoted to providing a library
of operations on types and terms and their properties. This includes, among
others, executable functions for type checking, different types of substitu-
tions, abstractions, the wellformedness checks and β and η reductions.

– Proving derived rules of our inference system takes up 3,000 LOC. A large
part of this is deriving rules for equality and the β and η reductions. Weak-
ening rules are also derived.

– Making the wellformedness checks for (order-sorted) signatures and theories
as well as the type instance checks executable takes 1,800 LOC.

– Definition and correctness proof for the checker builds on the above material
and take only about 500 additional LOC.

9 Integration with Isabelle

As explained above, Isabelle generates SML code for the proof checker. This
code has its own definitions of types, terms etc. and needs to be interfaced with
the corresponding data structures in Isabelle. This step requires 150 lines of
handwritten SML code (glue code) that translates Isabelle’s data structures into
the corresponding data structures in the generated proof checker such that we
can feed them into check-proof. We cannot verify this code and therefore aim
to keep it as small and simple as possible. This is the reason for the previously
mentioned intentional implementation bias we introduced in our formalization.
We describe now how the various data types are translated. We call a translation
trivial if it merely replaces one constructor by another, possibly forgetting some
information.

Isabelle’s Metalogic: Formalization and Proof Checker 13

The translation of types and terms is trivial as their structure is almost
identical in the two settings. For Isabelle code experts it should be mentioned
that the two term constructors Free and Var in Isabelle (which both represent
free variables but Var can be instantiated by unification) are combined in type
var of the formalization which we left unspecified but which in fact looks like
this: datatype var = Free name | Var indexname. This is purely to trivialize
the glue code, in our formalization var is totally opaque.

Proof term translation is trivial except for two special cases. Previously
proved lemmas become axioms in the translation (see also below) and so-called
“oracles” (typically the result of unfinished proofs, i.e. “sorry” on the user level)
are rejected (but none of the theories we checked contain oracles). Also remem-
ber that the translation of proofs is not safety critical because all that matters
is that in the end we obtain a correct proof of the claimed proposition.

We also provide functions to translate relevant content from the background
theory: axioms and (order-sorted) signatures. This mostly amounts to extracting
association lists from efficient internal data structures. Translating the axioms
also involves translating some alternative internal representation of type class
constraints into their standard form presented in Sect. 6.3.

The checker is integrated into Isabelle by calling it every time a new named
theorem has been proved. The set of theorems proved so far is added to the ax-
iomatic basis for this check. Cyclic dependencies between lemmas are ruled out
by this ordering because every theorem is checked before being added to the ax-
iomatic basis. However, an explicit cyclicity check is not part of the formalization
(yet), which speaks only about checking single proofs.

10 Running the Proof Checker

We run this modified Isabelle with our proof checker on multiple theories in
various object logics contained in the Isabelle distribution. A rough overview
of the scope of the covered material for some logics and the required running
times can be found in the following table. The running times are the total times
for running Isabelle, not just the proof checking, but the latter takes 90% of
the time. All tests were performed on a Intel Core i7-9750H CPU running at
2.60GHz and 32GB of RAM.

Logic LOC Time
FOL 4,500 45 secs
ZF 55,000 25 mins
HOL 10,000 26 mins

We can check the material in several smaller object logics in their entirety.
One of the larger such logics is first-order logic (FOL). These logics do not de-
velop any applications but FOL comes with proof automation and theories test-
ing that automation, in particular Pelletier’s collection of problems that were
considered challenges in their day [31]. Because the proofs are found automat-
ically, the resulting proof terms will typically be quite complex and good test
material for a proof checker.

14 T. Nipkow and S. Roßkopf

The logic ZF (Zermelo-Fraenkel set theory) builds on FOL but contains real
applications and is an order of magnitude larger than FOL. We are able to check
all material formalized in ZF in the Isabelle distribution.

Isabelle’s most frequently used and largest object logic is HOL. We managed
to check some of the initial theories of the main library. These theories contain
the basic logic and the libraries of sets, functions, orderings, lattices and groups.
The formalizations are non-trivial and makes heavy use of Isabelle’s type classes.

Why can we check about five times as many lines of code in ZF compared to
HOL? Profiling revealed that the proof checker spends a lot of time in functions
that access the signature, especially the wellformedness checks. The primary rea-
sons: inefficient data structures (e.g. association lists) and thus the running time
depends heavily on size of signature and increases with every new constant, type
and class. To make matters worse, there is no sharing of any kind in terms/types
and their wellformedness checks. Because ZF is free of polymorphism and type
classes, these wellformedness checks are much simpler.

11 Trust Assumptions

We need to trust the following components outside of the formalization:

– The verification (and code generation) of our proof checker in Isabelle/HOL.
This is inevitable, one has to trust some theorem prover to start with. We
could improve the trustworthiness of this step by porting our proofs to the
verified HOL prover by Kumar et el. [13] but its code generator produces
CakeML [14], not SML.

– The unverified glue code in the integration of our proof checker into Isabelle
(Sect. 9).

Because users currently cannot examine Isabelle’s internal data structures
that we start from, they have to trust Isabelle’s front end that parses and trans-
forms some textual input file into internal data structures. One could add a
(possibly verified) presentation layer that outputs those internal representations
into a readable format that can be inspected, while avoiding the traps Adams
[3] is concerned with.

12 Future Work

Our primary focus will be on scaling up the proof checker to not just deal with all
of HOL but with real applications (including itself!). There is a host of avenues
for exploration. Just to name a few promising directions: more efficient data
structures than association lists (e.g. via existing frameworks [19,20]); caching
of wellformedness checks for types and terms; exploiting sharing within terms
and types (tricky because our intentionally simple glue code creates copies);
working with the compressed proof terms [5] that Isabelle creates by default
instead of uncompressing them as we do now.

Isabelle’s Metalogic: Formalization and Proof Checker 15

We will also upgrade the formalization of our checker from individual the-
orems sets of theorems, explicitly checking cyclic dependencies (which are cur-
rently prevented by the glue code, see Sect. 9).

A presentation layer as discussed in Sect. 11 would not just allow the inspec-
tion of the internal representation of the theories but could also be extended to
the proofs themselves, thus permitting checkers to be interfaced with Isabelle on
a textual level instead of internal data structures.

It would also be nice to have a model-theoretic semantics forM. We believe
that the work by Kunčar and Popescu [15,16,17,18] could be adapted from HOL
to M. This would in particular yield semantically justified cyclicity checks for
constant and type definitions which we currently treat as axioms because a purely
syntactic justification is unclear.

Acknowledgements

We thank Kevin Kappelmann, Magnus Myreen, Larry Paulson, Andrei Popescu
and Makarius Wenzel for their comments.

A Appendix

subst-bv u t = subst-bv2 t 0 u

subst-bv2 (Bv i) n u = (if i < n then Bv i else if i = n then u else Bv (i − 1))
subst-bv2 (Abs T t) n u = Abs T (subst-bv2 t (n + 1) (lift u 0))
subst-bv2 (f · t) n u = subst-bv2 f n u · subst-bv2 t n u
subst-bv2 t = t

lift (Bv i) n = (if n ≤ i then Bv (i + 1) else Bv i)
lift (Abs T t) n = Abs T (lift t (n + 1))
lift (f · t) n = lift f n · lift t n
lift t = t

bind-fv T t = bind-fv2 T 0 t

bind-fv2 var n (Fv v T) = (if var = (v , T) then Bv n else Fv v T)
bind-fv2 var n (Abs T t) = Abs T (bind-fv2 var (n + 1) t)
bind-fv2 var n (f · u) = bind-fv2 var n f · bind-fv2 var n u
bind-fv2 t = t

References

1. Åman Pohjola, J., Gengelbach, A.: A mechanised semantics for HOL with ad-
hoc overloading. In: Albert, E., Kovács, L. (eds.) LPAR 2020: 23rd International
Conference on Logic for Programming, Artificial Intelligence and Reasoning. EPiC
Series in Computing, vol. 73, pp. 498–515. EasyChair (2020), https://easychair.
org/publications/paper/9Hcd

https://easychair.org/publications/paper/9Hcd
https://easychair.org/publications/paper/9Hcd

16 T. Nipkow and S. Roßkopf

2. Abrahamsson, O.: A verified proof checker for higher-order logic. J. Log. Al-
gebraic Methods Program. 112, 100530 (2020), https://doi.org/10.1016/j.

jlamp.2020.100530

3. Adams, M.: HOL Zero’s solutions for Pollack-inconsistency. Lect. Notes in
Comp. Sci., vol. 9807, pp. 20–35. Springer (2016), https://doi.org/10.1007/

978-3-319-43144-4_2

4. Berghofer, S., Nipkow, T.: Proof terms for simply typed higher order logic. In:
Harrison, J., Aagaard, M. (eds.) Theorem Proving in Higher Order Logics. Lect.
Notes in Comp. Sci., vol. 1869, pp. 38–52. Springer (2000)

5. Berghofer, S., Nipkow, T.: Executing higher order logic. In: Callaghan, P., Luo, Z.,
McKinna, J., Pollack, R. (eds.) Types for Proofs and Programs (TYPES 2000).
Lect. Notes in Comp. Sci., vol. 2277, pp. 24–40. Springer (2002)

6. Carneiro, M.M.: Metamath Zero: Designing a theorem prover prover. In:
Benzmüller, C., Miller, B.R. (eds.) Intelligent Computer Mathematics, CICM
2020. Lect. Notes in Comp. Sci., vol. 12236, pp. 71–88. Springer (2020), https:
//doi.org/10.1007/978-3-030-53518-6_5

7. Gheri, L., Popescu, A.: A formalized general theory of syntax with bindings: Ex-
tended version. J. Automated Reasoning 64(4), 641–675 (2020), https://doi.

org/10.1007/s10817-019-09522-2

8. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in Isa-
belle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Interactive Theo-
rem Proving (ITP 2013). Lect. Notes in Comp. Sci., vol. 7998, pp. 100–115. Springer
(2013)

9. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) Functional and Logic Programming
(FLOPS 2010). Lect. Notes in Comp. Sci., vol. 6009, pp. 103–117. Springer (2010)

10. Haftmann, F., Wenzel, M.: Constructive type classes in isabelle. In: Altenkirch, T.,
McBride, C. (eds.) Types for Proofs and Programs, TYPES 2006. Lect. Notes in
Comp. Sci., vol. 4502, pp. 160–174. Springer (2006), https://doi.org/10.1007/
978-3-540-74464-1_11

11. Harrison, J.: Towards self-verification of HOL Light. In: Furbach, U., Shankar, N.
(eds.) Proceedings of the third International Joint Conference, IJCAR 2006. Lect.
Notes in Comp. Sci., vol. 4130, pp. 177–191. Springer, Seattle, WA (2006)

12. Hurd, J.: OpenTheory: Package management for higher order logic theories. In:
Reis, G., Théry, L. (eds.) Workshop on Programming Languages for Mechanized
Mathematics Systems (ACM SIGSAM PLMMS 2009). pp. 31–37 (2009)

13. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: Self-formalisation of higher-order
logic — semantics, soundness, and a verified implementation. J. Automated Rea-
soning 56(3), 221–259 (2016), https://doi.org/10.1007/s10817-015-9357-x

14. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: A verified implemen-
tation of ML. In: Principles of Programming Languages (POPL). pp. 179–191.
ACM Press (Jan 2014). https://doi.org/10.1145/2535838.2535841

15. Kunčar, O., Popescu, A.: A consistent foundation for Isabelle/HOL. In: Urban,
C., Zhang, X. (eds.) Interactive Theorem Proving, ITP 2015. Lect. Notes in
Comp. Sci., vol. 9236, pp. 234–252. Springer (2015), https://doi.org/10.1007/
978-3-319-22102-1_16

16. Kunčar, O., Popescu, A.: Comprehending Isabelle/HOL’s consistency. In: Yang,
H. (ed.) Programming Languages and Systems, ESOP 2017. Lect. Notes in
Comp. Sci., vol. 10201, pp. 724–749. Springer (2017), https://doi.org/10.1007/
978-3-662-54434-1_27

https://doi.org/10.1016/j.jlamp.2020.100530
https://doi.org/10.1016/j.jlamp.2020.100530
https://doi.org/10.1007/978-3-319-43144-4_2
https://doi.org/10.1007/978-3-319-43144-4_2
https://doi.org/10.1007/978-3-030-53518-6_5
https://doi.org/10.1007/978-3-030-53518-6_5
https://doi.org/10.1007/s10817-019-09522-2
https://doi.org/10.1007/s10817-019-09522-2
https://doi.org/10.1007/978-3-540-74464-1_11
https://doi.org/10.1007/978-3-540-74464-1_11
https://doi.org/10.1007/s10817-015-9357-x
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/978-3-319-22102-1_16
https://doi.org/10.1007/978-3-319-22102-1_16
https://doi.org/10.1007/978-3-662-54434-1_27
https://doi.org/10.1007/978-3-662-54434-1_27

Isabelle’s Metalogic: Formalization and Proof Checker 17

17. Kunčar, O., Popescu, A.: Safety and conservativity of definitions in HOL and
Isabelle/HOL. Proc. ACM Program. Lang. 2(POPL), 24:1–24:26 (2018), https:
//doi.org/10.1145/3158112

18. Kunčar, O., Popescu, A.: A consistent foundation for Isabelle/HOL. J.
Automated Reasoning 62(4), 531–555 (2019), https://doi.org/10.1007/

s10817-018-9454-8
19. Lammich, P., Lochbihler, A.: The Isabelle collections framework. In: Kaufmann,

M., Paulson, L.C. (eds.) Interactive Theorem Proving, ITP 2010. Lect. Notes in
Comp. Sci., vol. 6172, pp. 339–354. Springer (2010), https://doi.org/10.1007/
978-3-642-14052-5_24

20. Lochbihler, A.: Light-weight containers for isabelle: Efficient, extensible, nestable.
In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Interactive Theorem Proving,
ITP 2013. Lect. Notes in Comp. Sci., vol. 7998, pp. 116–132. Springer (2013),
https://doi.org/10.1007/978-3-642-39634-2_11

21. Journal of Automated Reasonig: Special Issue: Theory and Applications of Ab-
straction, Substitution and Naming, vol. 49. Springer (Aug 2012), https://link.
springer.com/journal/10817/volumes-and-issues/49-2

22. Nipkow, T.: Order-sorted polymorphism in Isabelle. In: Huet, G., Plotkin, G. (eds.)
Logical Environments. pp. 164–188. Cambridge University Press (1993)

23. Nipkow, T.: More Church-Rosser proofs (in Isabelle/HOL). J. Automated Reason-
ing 26, 51–66 (2001)

24. Nipkow, T., Klein, G.: Concrete Semantics with Isabelle/HOL. Springer (2014),
http://concrete-semantics.org

25. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, Lect. Notes in Comp. Sci., vol. 2283. Springer (2002)

26. Nipkow, T., Paulson, L.C.: Isabelle-91. In: Kapur, D. (ed.) Automated Deduction
- CADE-11. Lect. Notes in Comp. Sci., vol. 607, pp. 673–676. Springer (1992),
https://doi.org/10.1007/3-540-55602-8_201

27. Nipkow, T., Prehofer, C.: Type reconstruction for type classes. J. Functional Pro-
gramming 5(2), 201–224 (1995)

28. Nipkow, T., Snelting, G.: Type classes and overloading resolution via order-sorted
unification. In: Hughes, J. (ed.) Proc. 5th ACM Conf. Functional Programming
Languages and Computer Architecture. Lect. Notes in Comp. Sci., vol. 523, pp.
1–14. Springer (1991)

29. Paulson, L.C.: The foundation of a generic theorem prover. J. Automated Reason-
ing 5, 363–397 (1989)

30. Paulson, L.C.: Isabelle: A Generic Theorem Prover, Lect. Notes in Comp. Sci.,
vol. 828. Springer (1994)

31. Pelletier, F.: Seventy-five problems for testing automatic theorem provers. J. Au-
tomated Reasoning 2, 191–216 (06 1986). https://doi.org/10.1007/BF02432151

32. Pfenning, F.: Elf: A language for logic definition and verified metaprogramming.
In: Logic in Computer Science (LICS 1989). pp. 313–322. IEEE Computer Society
Press (1989)

33. Pfenning, F., Schürmann, C.: System description: Twelf - A meta-logical framework
for deductive systems. In: Ganzinger, H. (ed.) Automated Deduction, CADE-16.
Lect. Notes in Comp. Sci., vol. 1632, pp. 202–206. Springer (1999), https://doi.
org/10.1007/3-540-48660-7_14

34. Pientka, B.: Beluga: Programming with dependent types, contextual data, and
contexts. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) Functional and Logic Pro-
gramming, FLOPS 2010. Lect. Notes in Comp. Sci., vol. 6009, pp. 1–12. Springer
(2010), https://doi.org/10.1007/978-3-642-12251-4_1

https://doi.org/10.1145/3158112
https://doi.org/10.1145/3158112
https://doi.org/10.1007/s10817-018-9454-8
https://doi.org/10.1007/s10817-018-9454-8
https://doi.org/10.1007/978-3-642-14052-5_24
https://doi.org/10.1007/978-3-642-14052-5_24
https://doi.org/10.1007/978-3-642-39634-2_11
https://link.springer.com/journal/10817/volumes-and-issues/49-2
https://link.springer.com/journal/10817/volumes-and-issues/49-2
http://concrete-semantics.org
https://doi.org/10.1007/3-540-55602-8_201
https://doi.org/10.1007/BF02432151
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/978-3-642-12251-4_1

18 T. Nipkow and S. Roßkopf

35. Sozeau, M., Boulier, S., Forster, Y., Tabareau, N., Winterhalter, T.: Coq Coq
correct! Verification of type checking and erasure for Coq, in Coq. Proc. ACM
Program. Lang. 4(POPL), 8:1–8:28 (2020), https://doi.org/10.1145/3371076

36. Urban, C.: Nominal techniques in Isabelle/HOL. J. Automated Reasoning 40, 327–
356 (2008), https://doi.org/10.1007/s10817-008-9097-2

37. Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L.,
Felty, A.P. (eds.) Theorem Proving in Higher Order Logics, TPHOLs’97. Lect.
Notes in Comp. Sci., vol. 1275, pp. 307–322. Springer (1997), https://doi.org/
10.1007/BFb0028402

https://doi.org/10.1145/3371076
https://doi.org/10.1007/s10817-008-9097-2
https://doi.org/10.1007/BFb0028402
https://doi.org/10.1007/BFb0028402

	Isabelle's Metalogic: Formalization and Proof Checker

