Flow Networks and the Min-Cut-Max-Flow
Theorem

Peter Lammich and S. Reza Sefidgar

March 3, 2017

Abstract

We present a formalization of flow networks and the Min-Cut-Max-
Flow theorem. Our formal proof closely follows a standard textbook
proof, and is accessible even without being an expert in Isabelle/HOL—
the interactive theorem prover used for the formalization.

Contents
1 Introduction

2 Flows, Cuts, and Networks

2.1 Definitions
2.1.1 Flows
2.1.2 Cuts
2.1.3 Networks
2.1.4 Networks with Flows and Cuts

2.2 Properties
2.2.1 Flows
2.2.2 Networks
2.2.3 Networks with Flow

3 Residual Graph
3.1 Definition
3.2 Properties L oo

4 Augmenting Flows

4.1 Augmentation of a Flow
4.2 Augmentation yields Valid Flow

4.2.1 Capacity Constraint
4.3 Value of the Augmented Flow

5 Augmenting Paths

5.1 Definitions Lo Lo
5.2 Augmenting Flow is Valid Flow
5.3 Value of Augmenting Flow is Residual Capacity

6 The Ford-Fulkerson Theorem

6.1 Net Flow s
6.2 Ford-Fulkerson Theorem
6.3 Corollaries

1 Introduction

Computing the maximum flow of a network is an important problem in
graph theory. Many other problems, like maximum-bipartite-matching,
edge-disjoint-paths, circulation-demand, as well as various scheduling and
resource allocating problems can be reduced to it. The Ford-Fulkerson
method [3] describes a class of algorithms to solve the maximum flow prob-
lem. It is based on a corollary of the Min-Cut-Max-Flow theorem [3, 2],
which states that a flow is maximal iff there exists no augmenting path.

In this chapter, we present a formalization of flow networks and prove the
Min-Cut-Max-Flow theorem, closely following the textbook presentation of
Cormen et al. [1]. We have used the Isar [4] proof language to develop
human-readable proofs that are accessible even to non-Isabelle experts.

2 Flows, Cuts, and Networks

theory Network
imports Graph
begin

In this theory, we define the basic concepts of flows, cuts, and (flow) net-
works.

2.1 Definitions
2.1.1 Flows

type-synonym ’capacity flow = edge = 'capacity

locale Preflow = Graph ¢ for ¢ :: 'capacity::linordered-idom graph +
fixes s t :: node
fixes [:: 'capacity flow

assumes capacity-const: Ve. 0 < fe ANfe<ce
assumes no-deficient-nodes: Vv € V—{s,t}.

(5~ ecoutgoing v. fe) < (3. e€incoming v. f e)
begin
end

An s-t flow on a graph is a labeling of the edges with real values, such that:

capacity constraint the flow on each edge is non-negative and does not
exceed the edge’s capacity;

conservation constraint for all nodes except s and ¢, the incoming flows
equal the outgoing flows.

locale Flow = Preflow c st f
for c :: 'capacity::linordered-idom graph
and st :: node
and f +
assumes no-active-nodes:
VveV —{st}t O ecoutgoing v. f e) > (> e€incoming v. f ¢€)
begin
lemma conservation-const: Vv € V. — {s, t}.
(3" e € incoming v. fe) = (D e € outgoing v. f e)
(proof)

The value of a flow is the flow that leaves s and does not return.

definition val :: 'capacity
where val = ()" e € outgoing s. fe) — (D e € incoming s. f e)
end

locale Finite-Preflow = Preflow ¢ s t f + Finite-Graph c
for c :: 'capacity::linordered-idom graph and s t f

locale Finite-Flow = Flow ¢ s t f + Finite-Preflow ¢ s t f
for c :: 'capacity::linordered-idom graph and s t f

2.1.2 Cuts

A cut is a partitioning of the nodes into two sets. We define it by just
specifying one of the partitions.

type-synonym cut = node set

locale Cut = Graph +

fixes k :: cut
assumes cut-ss-V: kK C V

2.1.3 Networks

A network is a finite graph with two distinct nodes, source and sink, such
that all edges are labeled with positive capacities. Moreover, we assume that

e the source has no incoming edges, and the sink has no outgoing edges

e we allow no parallel edges, i.e., for any edge, the reverse edge must not
be in the network

e Every node must lay on a path from the source to the sink

locale Network = Graph c for c :: 'capacity::linordered-idom graph +
fixes s t :: node
assumes s-node[simp, introl]: s € V
assumes t-node[simp, introl]: t € V

assumes s-not-t[simp, introl]: s # t
assumes cap-non-negative: ¥ u v. ¢ (u, v) > 0
assumes no-incoming-s: Vu. (u, s) ¢ E
assumes no-outgoing-t: Vu. (t, u) ¢ E
assumes no-parallel-edge: Vu v. (u, v) € E — (v, u) ¢ E
assumes nodes-on-st-path: Yv € V. connected s v A\ connected v t
assumes finite-reachable: finite (reachableNodes s)
begin

Our assumptions imply that there are no self loops
lemma no-self-loop: Vu. (u, u) ¢ E
(proof)
lemma adjacent-not-self [simp, introl]: v ¢ adjacent-nodes v

(proof)

A flow is maximal, if it has a maximal value

definition isMaxzFlow :: - flow = bool
where isMazFlow f = Flow c st f A
(Vf'. Flow c st f' — Flow.val ¢ s f' < Flow.val ¢ s f)

definition is-maz-flow-val fv = 3f. isMaxFlow f N fu=Flow.val ¢ s f

lemma t-not-s[simpl: t # s (proof)

end

2.1.4 Networks with Flows and Cuts

For convenience, we define locales for a network with a fixed flow, and a
network with a fixed cut

context Network begin

definition excess :: 'capacity flow = node = ’'capacity where

excess fv = (D e€incoming v. fe) — (D e€outgoing v. fe)
end

locale NPreflow = Network ¢ s t + Preflow c st f
for c :: 'capacity::linordered-idom graph and s t f
begin

end

locale NFlow = NPreflow ¢ st f + Flowcstf
for c :: 'capacity::linordered-idom graph and s t f

lemma (in Network) isMazFlow-alt:
isMaxFlow f <— NFlow c st f A
(Vf'. NFlow ¢ st f' — Flow.val ¢ s f' < Flow.val ¢ s f)

{proof)

A cut in a network separates the source from the sink

locale NCut = Network ¢ st + Cut c k
for c :: 'capacity::linordered-idom graph and st k +
assumes s-in-cut: s € k
assumes t-ni-cut: t ¢ k

begin

The capacity of the cut is the capacity of all edges going from the source’s
side to the sink’s side.

definition cap :: 'capacity
where cap = (3 e € outgoing’ k. c e)
end

A minimum cut is a cut with minimum capacity.

definition isMinCut :: - graph = nat = nat = cut = bool
where isMinCut ¢ stk = NCut c stk A
(VE'. NCut ¢ s t k' — NCut.cap ¢ k < NCut.cap c k')

2.2 Properties
2.2.1 Flows

context Preflow
begin

Only edges are labeled with non-zero flows

lemma zero-flow-simp[simp]:
(u,v)¢E = f(u,v) = 0
(proof)

lemma f-non-negative: 0 < fe
{proof)

lemma sum-f-non-negative: sum f X > 0 {proof)
end — Preflow

context Flow
begin
We provide a useful equivalent formulation of the conservation constraint.

lemma conservation-const-pointwise:
assumes uveV — {s,t}

shows (3_veE“{u}. f (uw)) = O veE~t{u}. f (v,u))
{proof)

The value of the flow is bounded by the capacity of the outgoing edges of
the source node

lemma val-bounded:
—(>_ e€incoming s. ¢ e) < wval
val < (Y. e€outgoing s. c e)
(proof)

end — Flow

Introduce a flow via the conservation constraint

lemma (in Graph) intro-Flow:
assumes cap: Ve. 0 < feANfe<ce
assumes cons: Vv € V — {s, t}.
(5" e € incoming v. fe) = (D e € outgoing v. f e)
shows Flow ¢ s t f
(proof)

context Finite-Preflow
begin

The summation of flows over incoming/outgoing edges can be extended to a
summation over all possible predecessor/successor nodes, as the additional
flows are all zero.

lemma sum-outgoing-alt-flow:
fixes g :: edge = 'capacity
assumes ueV
shows (> ecoutgoing u. fe) = O veV. f (u,v))
(proof)

lemma sum-incoming-alt-flow:
fixes g :: edge = 'capacity
assumes ucV
shows (> ecincoming u. fe) = O veV. f (v,u))

(proof)
end — Finite Preflow

2.2.2 Networks

context Network
begin

lemmas [simp] = no-incoming-s no-outgoing-t

lemma incoming-s-empty[simp]: incoming s = {}

(proof)
lemma outgoing-t-empty[simp|: outgoing t = {}
(proof)

The network constraints implies that all nodes are reachable from the source
node

lemma reachable-is-V[simp]: reachableNodes s = V

(proof)

sublocale Finite-Graph
(proof)

lemma cap-positive: e € E = ce > 0
(proof)

lemma V-not-empty: VA{} (proof)
lemma FE-not-empty: E#{} (proof)

lemma card-V-ge2: card V > 2
(proof)

lemma zero-is-flow: Flow ¢ s t (A-. 0)
{proof)

lemma maz-flow-val-unique:
[is-maz-flow-val fvl; is-maz-flow-val fv2] = ful=fv2

(proof)

end — Network

2.2.3 Networks with Flow

context NPreflow

begin

sublocale Finite-Preflow (proof)

As there are no edges entering the source/leaving the sink, also the corre-
sponding flow values are zero:

lemma no-inflow-s: ¥V e € incoming s. fe = 0 (is ?thesis)

(proof)

lemma no-outflow-t: Ve € outgoing t. fe = 0

(proof)

For an edge, there is no reverse edge, and thus, no flow in the reverse direc-
tion:

lemma zero-rev-flow-simp[simp|: (u,0)€E = f(v,u) = 0

{proof)

lemma excess-non-negative: VoeV —{s,t}. excess fv > 0
{proof)

lemma excess-nodes-only: excess fv > 0 = v € V
(proof)

lemma ezcess-non-negative”: Vv € V. — {s}. excess fv > 0

(proof)

lemma excess-s-non-pos: excess fs < 0
(proof)

end — Network with preflow

context NFlow begin
sublocale Finite-Preflow (proof)

There is no outflow from the sink in a network. Thus, we can simplify the
definition of the value:

corollary val-alt: val = (D e € outgoing s. f e)

(proof)
end
end — Theory

3 Residual Graph

theory Residual-Graph
imports Network
begin

In this theory, we define the residual graph.

3.1 Definition

The residual graph of a network and a flow indicates how much flow can
be effectively pushed along or reverse to a network edge, by increasing or
decreasing the flow on that edge:
definition residualGraph :: - graph = - flow = - graph
where residualGraph ¢ f = A(u, v).

if (u, v) € Graph.E c then

¢ (u7 ’U) - f (’U,, ’U)
else if (v, u) € Graph.E ¢ then

f (v, u)
else
0

context Network begin

abbreviation cf-of = residualGraph c
abbreviation cfE-of f = Graph.E (cf-of f)

The edges of the residual graph are either parallel or reverse to the edges of
the network.
lemma cfE-of-ss-invE: cfE-of ¢f C E U E~!

(proof)

lemma cfE-of-ss-VaV: cfE-of f C VxV
(proof)

lemma cfE-of-finite[simp, introl]: finite (c¢fE-of f)
(proof)

lemma cf-no-self-loop: (u,u)écfE-of f
(proof)

end

Let’s fix a network with a preflow f on it
context NPreflow

begin

We abbreviate the residual graph by cf.

abbreviation c¢f = residualGraph ¢ f
sublocale ¢f: Graph cf {proof)
lemmas cf-def = residualGraph-def|of ¢ f]

3.2 Properties
lemmas c¢fE-ss-invE = cfE-of-ss-invE|of f]

The nodes of the residual graph are exactly the nodes of the network.

lemma resV-netV[simp): ¢f.V =V
(proof)

Note, that Isabelle is powerful enough to prove the above case distinctions
completely automatically, although it takes some time:

lemma cf.V =V
(proof)

As the residual graph has the same nodes as the network, it is also finite:

10

sublocale cf: Finite-Graph cf
(proof)

The capacities on the edges of the residual graph are non-negative

lemma resE-nonNegative: cf e > 0
(proof)

Again, there is an automatic proof

lemma cfe > 0
(proof)

All edges of the residual graph are labeled with positive capacities:

corollary resFE-positive: e € ¢f . E = cfe > 0
(proof)

lemma reverse-flow: Preflow c¢f st f' = YV (u, v) € E. f' (v, u) < f (u, v)

(proof)

definition (in Network) flow-of-cf cf e = (if (e€E) then c e — c¢f e else 0)

lemma (in NPreflow) E-ss-cfinvE: E C Graph.E cf U (Graph.E cf)™1
(proof)

Nodes with positive excess must have an outgoing edge in the residual graph.

Intuitively: The excess flow must come from somewhere.

lemma active-has-cf-outgoing: excess f u > 0 = cf.outgoing u # {}
(proof)

end — Network with preflow

locale RPreGraph — Locale that characterizes a residual graph of a network
= Network +

fixes cf

assumes EX-RPG: 3f. NPreflow ¢ st f N ¢f = residualGraph c f
begin

lemma this-loc-rpg: RPreGraph ¢ s t cf
(proof)

definition f = flow-of-cf cf

lemma f-unique:

11

assumes NPreflow ¢ st f'
assumes A: ¢f = residualGraph c [’
shows ' = f

(proof)

lemma is-NPreflow: NPreflow ¢ s t (flow-of-cf cf)
(proof)

sublocale f: NPreflow ¢ s t f {proof)

lemma rg-is-cf [simp]: residualGraph ¢ f = cf

(proof)

lemma rg-fo-inv[simp)|: residualGraph ¢ (flow-of-cf ¢f) = cf
(proof)

sublocale ¢f: Graph cf {proof)

lemma resV-netVi]simp): ¢f.V =V
(proof)

sublocale cf: Finite-Graph cf
(proof)

lemma E-ss-cfinvE: E C c¢f . E U cf. B!
(proof)

lemma cfE-ss-invE: ¢f. E C EU E~!
(proof)

lemma resE-nonNegative: cf e > 0

(proof)

end

context NPreflow begin
lemma is-RPreGraph: RPreGraph c s t cf

(proof)

lemma fo-rg-inv: flow-of-cf ¢f = f
{proof)

end

lemma (in NPreflow)

12

flow-of-cf (residualGraph ¢ f) = f
{proof)

locale RGraph — Locale that characterizes a residual graph of a network
= Network +

fixes cf

assumes EX-RG: 3f. NFlow c st f A ¢f = residualGraph c f
begin

sublocale RPreGraph

(proof)

lemma this-loc: RGraph ¢ s t cf

(proof)
lemma this-loc-rpg: RPreGraph c s t cf

(proof)

lemma is-NFlow: NFlow ¢ s t (flow-of-cf cf)
(proof)

sublocale f: NFlow ¢ s t f (proof)
end

context NFlow begin

lemma is-RGraph: RGraph ¢ st cf
(proof)

The value of the flow can be computed from the residual graph only

lemma val-by-cf: val = (3 (u,v)E€outgoing s. cf (v,u))
(proof)

end — Network with Flow

lemma (in RPreGraph) mazflow-imp-rgraph:
assumes isMazFlow (flow-of-cf cf)
shows RGraph ¢ s t cf

(proof)

end — Theory

4 Augmenting Flows

theory Augmenting-Flow
imports Residual-Graph
begin

In this theory, we define the concept of an augmenting flow, augmentation
with a flow, and show that augmentation of a flow with an augmenting flow

13

yields a valid flow again.

We assume that there is a network with a flow f on it

context NFlow
begin

4.1 Augmentation of a Flow

The flow can be augmented by another flow, by adding the flows of edges
parallel to edges in the network, and subtracting the edges reverse to edges
in the network.
definition augment :: 'capacity flow = 'capacity flow
where augment f' = A(u, v).
if (u, v) € E then
f(u,0) + " (u, 0) = 7 (v, u)

else
0

We define a syntax similar to Cormen et el.:

abbreviation (input) augment-syntaz (infix 1 55)
where A\ff'. f1f' = NFlow.augment c f f'

such that we can write f1f’ for the flow f augmented by f".

4.2 Augmentation yields Valid Flow

We show that, if we augment the flow with a valid flow of the residual graph,
the augmented flow is a valid flow again, i.e. it satisfies the capacity and
conservation constraints:

context
— Let the residual flow f’ be a flow in the residual graph
fixes f' :: 'capacity flow
assumes f'-flow: Flow cf s t f'

begin

interpretation f”: Flow cf s t f' {proof)

4.2.1 Capacity Constraint

First, we have to show that the new flow satisfies the capacity constraint:

lemma augment-flow-presv-cap:

shows 0 < (f1/7)(u,v) A (f1f)(u,0) < c(u,v)

(proof) lemma split-rflow-incoming:

(Cweef. BT Y u}. f (v,u) = (veE{u}. f(v,u) + (CveE~H {u}. f'(v,u))
(is ?LHS = ?RHS)

(proof)

14

For proving the conservation constraint, let’s fix a node wu, which is neither
the source nor the sink:
context
fixes u :: node
assumes U-ASM: ueV — {s,t}
begin

We first show an auxiliary lemma to compare the effective residual flow on
incoming network edges to the effective residual flow on outgoing network
edges.

Intuitively, this lemma shows that the effective residual flow added to the
network edges satisfies the conservation constraint.

private lemma flow-summation-auz:
shows (> veE“{u}. f' (u,v)) — Q- veE“{u}. f’ (v,u))
— (S veB L4 {u}. £ () — (0 ve B {u}. £/ (u))
(is YLHS = ?RHS is ?A — ?B = YRHS)

(proof)

Finally, we are ready to prove that the augmented flow satisfies the conser-
vation constraint:
lemma augment-flow-presv-con:
shows (> e € outgoing u. augment f' e) = (3. e € incoming u. augment [’ e)
(is ?LHS = ?RHS)
(proof)

Note that we tried to follow the proof presented by Cormen et al. [1] as
closely as possible. Unfortunately, this proof generalizes the summation to
all nodes immediately, rendering the first equation invalid. Trying to fix this
error, we encountered that the step that uses the conservation constraints
on the augmenting flow is more subtle as indicated in the original proof.
Thus, we moved this argument to an auxiliary lemma.

end — u is node

As main result, we get that the augmented flow is again a valid flow.

corollary augment-flow-presv: Flow ¢ s t (f1f”)
(proof)

4.3 Value of the Augmented Flow

Next, we show that the value of the augmented flow is the sum of the values
of the original flow and the augmenting flow.

lemma augment-flow-value: Flow.val ¢ s (f1f’) = val + Flow.val cf s f'

(proof)

Note, there is also an automatic proof. When creating the above explicit proof, this
automatic one has been used to extract meaningful subgoals, abusing Isabelle as a
term rewriter.

15

lemma Flow.val ¢ s (f1f") = val + Flow.val ¢f s f’
(proof)

end — Augmenting flow
end — Network flow

end — Theory

5 Augmenting Paths

theory Augmenting-Path
imports Residual-Graph
begin

We define the concept of an augmenting path in the residual graph, and the
residual flow induced by an augmenting path.

We fix a network with a preflow f on it.

context NPreflow
begin

5.1 Definitions

An augmenting path is a simple path from the source to the sink in the
residual graph:

definition isAugmentingPath :: path = bool
where isAugmentingPath p = cf .isSimplePath s p t

The residual capacity of an augmenting path is the smallest capacity anno-
tated to its edges:

definition resCap :: path = ’capacity
where resCap p = Min {cfe | e. e € set p}

lemma resCap-alt: resCap p = Min (cfset p)
— Useful characterization for finiteness arguments

(proof)

An augmenting path induces an augmenting flow, which pushes as much
flow as possible along the path:

definition augmentingFlow :: path = 'capacity flow
where augmentingFlow p = A(u, v).
if (u, v) € (set p) then
resCap p
else

0

16

5.2 Augmenting Flow is Valid Flow

In this section, we show that the augmenting flow induced by an augmenting
path is a valid flow in the residual graph.

We start with some auxiliary lemmas.

The residual capacity of an augmenting path is always positive.

lemma resCap-gzero-auz: cf.isPath s p t = 0<resCap p

(proof)

lemma resCap-gzero: isAugmentingPath p = 0<resCap p
(proof)

As all edges of the augmenting flow have the same value, we can factor this
out from a summation:

lemma sum-augmenting-alt:
assumes finite A
shows (> e € A. (augmentingFlow p) e)
= resCap p * of-nat (card (ANset p))

(proof)

lemma augFlow-resFlow: isAugmentingPath p = Flow cf s t (augmentingFlow

)
(proof)

5.3 Value of Augmenting Flow is Residual Capacity
Finally, we show that the value of the augmenting flow is the residual ca-
pacity of the augmenting path

lemma augFlow-val:
isAugmentingPath p = Flow.val ¢f s (augmentingFlow p) = resCap p

(proof)

end — Network with flow
end — Theory

6 The Ford-Fulkerson Theorem

theory Ford-Fulkerson
imports Augmenting-Flow Augmenting-Path
begin

In this theory, we prove the Ford-Fulkerson theorem, and its well-known
corollary, the min-cut max-flow theorem.

We fix a network with a flow and a cut

locale NFlowCut = NFlow c stf + NCut cstk

17

for ¢ :: 'capacity::linordered-idom graph and st f k
begin

lemma finite-k[simp, intro!]: finite k
(proof)

6.1 Net Flow

We define the net flow to be the amount of flow effectively passed over the
cut from the source to the sink:

definition netFlow :: 'capacity

where netFlow = (3 e € outgoing’ k. fe) — (3. e € incoming’ k. fe)

We can show that the net flow equals the value of the flow. Note: Cormen
et al. [1] present a whole page full of summation calculations for this proof,
and our formal proof also looks quite complicated.

lemma flow-value: netFlow = val

(proof)

The value of any flow is bounded by the capacity of any cut. This is in-
tuitively clear, as all flow from the source to the sink has to go over the
cut.

corollary weak-duality: val < cap

(proof)

end — Cut

6.2 Ford-Fulkerson Theorem
context NFlow begin

We prove three auxiliary lemmas first, and the state the theorem as a corol-
lary

lemma fofu-I-1I: isMaxFlow f = — (3 p. isAugmentingPath p)

(proof)

lemma fofu-II-11I:
= (3 p. isAugmentingPath p) = 3k’ NCut ¢ s t k' A val = NCut.cap ¢ k'
(proof)

lemma fofu-III-I:
Jdk. NCut ¢ stk N val = NCut.cap ¢ k = isMaxFlow f
(proof)

Finally we can state the Ford-Fulkerson theorem:

theorem ford-fulkerson: shows
isMaxFlow [+—

18

- Ex isAugmentingPath and — Ex isAugmentingPath <+—
(3k. NCut c stk A val = NCut.cap ¢ k)

{proof)

6.3 Corollaries

In this subsection we present a few corollaries of the flow-cut relation and
the Ford-Fulkerson theorem.

The outgoing flow of the source is the same as the incoming flow of the
sink. Intuitively, this means that no flow is generated or lost in the network,
except at the source and sink.

lemma inflow-t-outflow-s: (3 e € incoming t. fe) = (3. e € outgoing s. f e)
(proof)

As an immediate consequence of the Ford-Fulkerson theorem, we get that
there is no augmenting path if and only if the flow is maximal.

lemma noAugPath-iff-maxFlow: — (3 p. isAugmentingPath p) «— isMaxFlow f
(proof)
end — Network with flow

The value of the maximum flow equals the capacity of the minimum cut

lemma (in Network) maxFlow-minCut: [isMazFlow f; isMinCut ¢ s t k]
= Flow.val ¢ s f = NCut.cap c k

(proof)

end — Theory

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[2] P. Elias, A. Feinstein, and C. Shannon. A note on the maximum
flow through a network. IEEFE Transactions on Information Theory,
2(4):117-119, dec 1956.

[3] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Cana-
dian journal of Mathematics, 8(3):399-404, 1956.

[4] M. Wenzel. Isar - A generic interpretative approach to readable formal
proof documents. In TPHOLs’99, volume 1690 of LNCS, pages 167-184.
Springer, 1999.

19

	Introduction
	Flows, Cuts, and Networks
	Definitions
	Flows
	Cuts
	Networks
	Networks with Flows and Cuts

	Properties
	Flows
	Networks
	Networks with Flow

	Residual Graph
	Definition
	Properties

	Augmenting Flows
	Augmentation of a Flow
	Augmentation yields Valid Flow
	Capacity Constraint

	Value of the Augmented Flow

	Augmenting Paths
	Definitions
	Augmenting Flow is Valid Flow
	Value of Augmenting Flow is Residual Capacity

	The Ford-Fulkerson Theorem
	Net Flow
	Ford-Fulkerson Theorem
	Corollaries

