
C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

Hoare Logics for Time Bounds

A Study in Meta Theory

Maximilian P. L. Haslbeck and Tobias Nipkow?

Technische Universität München
haslbema@in.tum.de

http://www.in.tum.de/~{haslbema,nipkow}

Abstract. We study three different Hoare logics for reasoning about
time bounds of imperative programs and formalize them in Isabelle/HOL:
a classical Hoare like logic due to Nielson, a logic with potentials due to
Carbonneaux et al. and a separation logic following work by Atkey, Ch-
aguérand and Pottier. These logics are formally shown to be sound and
complete. Verification condition generators are developed and are shown
sound and complete too. We also consider variants of the systems where
we abstract from multiplicative constants in the running time bounds,
thus supporting a big-O style of reasoning. Finally we compare the ex-
pressive power of the three systems.

Keywords: Hoare Logic, Algorithm Analysis, Program Verification

1 Introduction

This paper is about Hoare logics for proving upper bounds on running times and
about the formalized (in a theorem prover) study of their meta theory. The paper
is not about the automatic analysis of running times but about fundamental
questions like soundness and completeness of logics and of verification condition
generators (VCGs). The need for such a study becomes apparent when browsing
the related literature (e.g. [1, 6, 7]): (formalized) soundness results are of course
provided, but completeness of logics and VCGs is missing.

We study multiple different Hoare logics because we are interested in dif-
ferent aspects of the logics. One aspect is the difference between precise upper
bounds and order-of-magnitude upper bounds that abstract from multiplicative
constants. In the latter case we speak of “big-O style” logics.

A second aspect is modularity. We would like to combine verified results
about subprograms in order to show correctness and running time for larger
programs. Therefore we also study a separation logic for running time analysis.

Overall we study the meta theory of three different kinds of Hoare logics that
have emerged in the literature. Our main contributions are:

? Supported by DFG GRK 1480 (PUMA) and Koselleck Grant NI 491/16-1

2 Maximilian P. L. Haslbeck, Tobias Nipkow

• Based on the simple imperative language IMP (Section 2), we formalize three
logics for time bounds from the literature (Section 3); we show their sound-
ness and completeness w.r.t. IMP’s semantics, discuss specific weaknesses
and strengths and study their interrelations (Section 4).

• The first logic we study is a big-O style logic due to Nielson [23] (Section
3.1). We improve, formalize and verify this logic and extend it with a VCG
whose soundness and completeness we also verify.

• In Section 3.2 we formalize a quantitative Hoare logic following ideas by
Carbonneaux et al. [4, 6] and extend their work as follows: we prove com-
pleteness of the logic and design a sound and complete VCG. Additionally
we extend the logic to a big-O style logic.

• Following ideas of Atkey [1] and Charguéraud and Pottier [7] we formalize
a logic similar to separation logic (Section 3.3) for reasoning about concrete
running times. We formally prove soundness and completeness.

• All proofs have been formalized in Isabelle/HOL [19, 18] and are available
online [9].

2 Basics

We consider the simple deterministic imperative language IMP. Its formalization
is standard and can be found elsewhere [18]. IMP’s commands are built up from
SKIP, assignment, sequential composition, conditional and While-loop. Program
states are functions from variables to values. By default c is a command and s
a state. Evaluation of a boolean or arithmetic expression e in state s is denoted
by JeKs.

We have defined a big-step semantics that counts the consumed time during
execution: SKIP, assignment and evaluation of boolean expressions require one

time unit. The precise definition of the semantics is routine. We write (c, s)
t

=⇒ s′

to mean that starting command c in state s terminates after time t in state s′.
Given a pair (c, s), ↓(c, s) means that the computation of c starting from s

terminates, ↓S(c, s) then denotes the final state, and ↓T (c, s) the execution time.

3 Hoare Logics for Time Bounds

In this section we study and extend three different Hoare logics: a classical one
based on [23], one using potentials [4] and one based on separation logic with
time credits [1].

3.1 Nielson style

Nielson and Nielson [23] present a Hoare logic to prove the “order of magnitude
of the execution time” of a program (which we call “big-O style”). They reason
about triples of the form {P}c{e ⇓ Q} where P and Q are assertions and e is
a time bound. The intuition is the following: if the execution of command c is

Hoare Logics for Time Bounds 3

started in a state satisfying P then it terminates in a state satisfying Q after
O(e) time units, i.e. the execution time has order of magnitude e. Note that e is
evaluated in the state before executing c.

Throughout the paper we rely on what is called a shallow embedding of
assertions and time bounds: there is no concrete syntactic representation of as-
sertions and time bounds but they are merely functions in HOL, our ambient
logic. They map states to truth values and natural numbers.

A complication in reasoning about execution time comes from the fact that
one needs to combine time bounds that refer to different points in the execu-
tion, for example when adding time bounds in a sequential composition. This
difficulty can be overcome with logical variables that enable us to transport time
bounds from the prestate to the poststate of a command. We formalize logical
variables by modelling assertions as functions of two states, the state of the
logical variables (typically l) and the state of the program variables (typically
s).

The validity of Nielson’s triples is formally defined as follows:

|=1 {P}c{e ⇓ Q} ≡ (∃k.∀l s. P l s −→ (∃t s′. (c, s)
t

=⇒ s′ ∧Q l s′ ∧ t ≤ k · e s))

The Hoare logic below needs to generate “fresh” logical variables. Thus we
need to express which logical variables are already used. This is called the support
of an assertion. Because assertions are merely functions, the support is defined
semantically:

support Q ≡ {x | ∃l1 l2 s. (∀y. y 6= x −→ l1 y = l2 y) ∧Q l1 s 6= Q l2 s}

Our Hoare logic is shown in Figure 1. It is largely a formalization of the sys-
tem in [23, Table 10.4] but with two important changes: we have simplified rule
While (details below) and we have replaced the consequence rule by conseqK ,
an adaptation of Kleymann’s stronger consequence rule [15]; rules conseq and
const are derived from it. Note that the latter two rules suffice for a sound and
complete Hoare logic, but our proof of completeness of the VCG needs conseqK .

Now we discuss the rules in Figure 1. Rules Skip, Assign, If and conseq are
straightforward. Note that 1 is the time bound λs.1 and + is lifted to time
bounds pointwise. The notation s[a/x] is short for “s with x mapped to JaKs”.

Now consider rule Seq. Given {P}c1{e1 ⇓ Q} and {Q}c2{e2 ⇓ R} one may
want to conclude {P}c1; c2{e1 + e2 ⇓ R}. Unfortunately, e1 + e2 does not lead
to the correct result, as c1 could have altered variables e2 depends on. In order
to adapt e2 for the changes that occur in c1, we use a shifted time bound e′2,
and leave as a proof goal to show that the value of e′2 in the prestate is an upper
bound on e2 in the poststate of c1. Rule Seq relates e′2 and e2 through a fresh
logical variable u that is equated with the value of e′2 in the prestate of c1. The
time bound e in the conclusion must be an upper bound of e1 + e′2.

In the const rule, the time bound can be reduced by a constant factor. Note
that we split up Nielson’s conse rule into conseq and const.

Our rule While is a simplification of the one in [23]. The latter is an extension
with time of the “standard” While-rule for total correctness where a variable

4 Maximilian P. L. Haslbeck, Tobias Nipkow

`1 {P}SKIP{1 ⇓ P}
Skip

`1 {λl s. P l (s[a/x])}x := a{1 ⇓ P}
Assign

`1 {λl s. P l s ∧ JbKs}c1{e ⇓ Q} `1 {λl s. P l s ∧ ¬JbKs}c2{e ⇓ Q}
`1 {P}IF b THEN c1 ELSE c2{e+ 1 ⇓ Q}

If

`1 {λl s. P l s ∧ e′2 s = l u}c1{e1 ⇓ λl s. Q l s ∧ e2 s ≤ l u} `1 {Q}c2{e2 ⇓ R}
(∀l s. P l s =⇒ e1 s+ e′2 s ≤ e s) u /∈ support P u /∈ support Q

`1 {P}c1; c2{e ⇓ R}
Seq

`1 {λl s. I l s ∧ JbKs ∧ e′ s = l u}c{e′′ ⇓ λl s. I l s ∧ e s ≤ l u}
(∀l s. I l s ∧ JbKs −→ e s ≥ 1 + e′ s+ e′′ s)

(∀l s. I l s ∧ ¬JbKs −→ e s ≥ 1) u /∈ support I
`1 {I}WHILE b DO c{e ⇓ λl s. I l s ∧ ¬JbKs}

While

∀l s. P ′ l s −→ P l s
`1 {P}c{e ⇓ Q}

∀l s′. Q l s′ −→ Q′ l s′

`1 {P ′}c{e′ ⇓ Q′}
conseq

∃k.∀l s. P l s −→ e s ≤ k · e′ s
`1 {P}c{e ⇓ Q}
`1 {P}c{e′ ⇓ Q}

const

∃k.∀l s. P ′ l s −→ (e s ≤ k · e′ s ∧ (∀s′.∃l′. P l′s ∧ (Q l′s′ −→ Q′ l s′)))
`1 {P}c{e ⇓ Q}
`1 {P ′}c{e′ ⇓ Q′}

conseqK

Fig. 1: Hoare logic for reasoning about order of magnitude of execution time

decreases with each loop iteration. However, once you have time, you no longer
need that variable and we removed it. The key constraint in rule While is e ≥
1+e′ +e′′. It can be explained by unfolding the loop once. The time e to execute
the whole loop must be an upper bound for the time e′′ to execute the loop body
plus the time e′ to execute the remaining loop iteration; the 1+ accounts for
evaluation of b. The time e′ to execute the remaining loop iterations is obtained
from e by (intuitively) an application of rule Seq : in the first premise a fresh
logical variable u is used to pull e back over c, resulting in e′. The rest of rule
While is standard.

Soundness of the calculus can be shown by induction on the derivation of
`1 {P}c{e ⇓ Q}:

Theorem 1 (Soundness of `1). `1 {P}c{e ⇓ Q} =⇒ |=1 {P}c{e ⇓ Q}

Our completeness proof follows the general pattern for Hoare logics: define
a weakest precondition operator wp and show that the triple {wp c Q}c{Q} is
derivable. In our setting wp is defined like this

wp c Q ≡ (λl s. ∃t s′. (c, s)
t

=⇒ s′ ∧Q l s′)

and we show derivability of the following triple that also takes time into account:

Lemma 1. finite(support Q) =⇒ `1 {wp c Q}c{λs. ↓T (c, s) ⇓ Q}

Hoare Logics for Time Bounds 5

As we need fresh logical variables for rules Seq and While, we assume that the
set of logical variables Q depends on is finite.

It is instructive to observe that for this proof, only the Hoare rules Skip to
conseq are needed. Neither const nor conseqK are used. Lemma 1 thus expresses
that it always is possible to derive a triple with the precise execution time as a
time bound. Only as a last step an abstraction of multiplicative constants and
over-approximation of the time bound is necessary. This shows that for every
valid triple one can first deduce a correct upper bound for the running time,
only to get rid of a multiplicative constant in a final application of the const
rule one. In the end, Lemma 1 implies completeness:

Theorem 2 (Completeness of `1).
finite (support Q) =⇒ |=1 {P}c{e ⇓ Q} =⇒ `1 {P}c{e ⇓ Q}

In particular we can now apply the above observation about the shape of deriva-
tions of valid triples to provable ones, by soundness: in any derivation one can
pull out all applications of const and combine them into a single one at the very
root of the proof tree. We will observe the very same principle when studying
the quantitative Hoare logic in Section 3.2.

Verification Condition Generator Showing validity of {P}c{e ⇓ Q} now
boils down to applying the correctly instantiated rules of the Hoare logic and
proving their side conditions. The former is a mechanical task, which is routinely
automated by a verification condition generator, while the latter is left to an
automatic or interactive theorem prover.

We design a VCG that collects the side conditions for an annotated program.
While for classical Hoare logic it suffices to annotate a loop with an invariant I,
for reasoning about execution time we introduce two more annotations for the
following reason.

Consider rule Seq in Figure 1. When applying the rule to a proof goal
`1 {P}c1; c2{e ⇓ R} we need to instantiate the variables P , Q, e1, e2, and e′2.
As for classical Hoare logic, Q is chosen to be the weakest preconditions of c2
w.r.t. R, which can be calculated if the loops in c2 are annotated by invariants.
(Analogously for P being the weakest precondition of c1 w.r.t. Q). Similarly,
when annotating the loops in c1 and c2 with time bounds E, time bounds e1
and e2 can be constructed. Finally, e′2 can be determined if the evolution of e2
through c1 is known. For straight line programs, this can be deduced, only for
loops a state transformer S has to be annotated. An annotated loop then has
the form {I, S,E} WHILE b DO C where I is the invariant and S and E are as
above.

For our completeness proof of the VCG we also need annotations that cor-
respond to applications of rule conseqK and record information that cannot be
inferred automatically. For that purpose we introduce a new annotated command
Conseq {P ′, Q, e′} C where P ′, Q and e′ are as in rule conseqK .

We use capital letters, e.g. C, to denote annotated commands and C is the
unannotated version of C stripped of all annotations.

6 Maximilian P. L. Haslbeck, Tobias Nipkow

We use three auxiliary functions pre, post and time. Their definitions are
shown in Figure 2.

pre SKIP Q = Q post SKIP s = s
pre (x := a) Q = (λls. Q l (s[a/x])) post (x := a) s = s[a/x]
pre (C1;C2) Q = pre C1 (pre C2 Q) post (C1;C2) s = post C2 (post C1 s)
pre (Conseq {P ′, , } C) Q = P ′ post (Conseq { , , } C) = post C
pre (IF b THEN C1 ELSE C2) Q l s = post (IF b THEN C1 ELSE C2) s =
if JbKs then pre C1 Q l s else pre C2 Q l s if JbKs then post C1 s else post C2 s
pre ({I, , } WHILE b DO C) Q = I post ({ , S, } WHILE b DO C) = S

time SKIP s = 1
time (x := a) s = 1
time (C1;C2) s = time C1 s+ time C2 (post C1 s)
time (Conseq { , , } C) = time C
time (IF b THEN C1 ELSE C2) s =
if JbKs then time C1 s else time C2 s
time ({ , , E} WHILE b DO C) = E

Fig. 2: Functions pre, post and time

The VCG reduces proving a triple {P}C{e ⇓ Q} to checking that the anno-
tations really are invariants, upper bounds and correct state transformers. The
VCG traverses C and collects all the verification conditions for the loops into a
big conjunction. The most interesting case is the loop itself:

vc ({I, S,E} WHILE b DO C) Q = vc C I ∧
(∀l s. (I l s ∧ JbKs −→ pre C I l s

∧ E s ≥ 1 + E(post C s) + time C s

∧ S s = S(post C s))

∧ (I l s ∧ ¬JbKs −→ Q l s ∧ E s ≥ 1 ∧ S s = s))

First, verification conditions are recursively generated from the loop body C
and the invariant I as desired post condition. The invariant and the loop guard
must imply preservation of the invariant, the recurrence inequation for the time
bound and that the state transformer S obeys the fixpoint equation for loops.
When exiting the loop, the post condition must hold, E has to pay for the last
test of the loop guard, and S needs to be the identity.

Hoare Logics for Time Bounds 7

The verification conditions for Conseq {P ′, Q, e′} C merely check the side
condition of rule conseqK :

vc (Conseq {P ′, Q, e′} C) Q′ = vc C Q ∧
∃k. ∀l s. P ′ l s −→ time C s ≤ k · e′ s

∧ ∀t.∃l′. pre C Q l′ s ∧ (Q l′ t −→ Q′ l t)

The remaining equations for vc are straightforward:

vc SKIP Q = True

vc (x := a) Q = True

vc (C1;C2) Q = (vc C1 (pre C2 Q) ∧ vc C2 Q)

vc (IF b THEN C1 ELSE C2) Q = (vc C1 Q ∧ vc C2 Q)

Theorem 3 (Soundness of vc). Let C and Q involve only finitely many logical
variables. Then vc C Q together with ∃k.∀l s. P l s −→ pre C Q l s∧ time C s ≤
k · e s imply `1 {P} C{e ⇓ Q}.

That is, for proving `1 {P} C{e ⇓ Q} one has to show the verification conditions,
that P implies the weakest precondition (as computed by pre) and that the
running time (as computed by time) is in the order of magnitude of e.

Now we come to the raison d’être of the stronger consequence rule conseqK :
the completeness proof of our VCG. The other proofs in this section only require
the derived rules conseq and const. Our completeness proof of the VCG builds
annotated programs that contain a Conseq construct for every Seq and While
rule. The annotations of Conseq enable us to adapt the logical state; without
this adaptation we failed to generate true verification conditions.

Theorem 4 (Completeness of vc). If `1 {P} c{e ⇓ Q} then there is a C such
that C = c, vc C Q is true and ∃k.∀l s. P l s −→ pre C Q l s∧time C s ≤ k ·e s.

That is, if a triple `1 {P} c{e ⇓ Q} is provable then c can be annotated such
that the verification conditions are true, P implies the weakest precondition (as
computed by pre) and the running time (as computed by time) is in the order
of magnitude of e.

Annotating loops with a correct S is troublesome, as it captures the semantics
of the whole loop. Luckily S only needs to be correct for “interesting” variables,
i.e. variables that occur in time bounds that need to be pulled backward through
the loop body. Often these variables are not modified by a command. We im-
plemented an optimized VCG that keeps track of which variables are of interest
and requires S to be correct only on those; we also showed its soundness and
completeness. Further details can be found in the formalization.

3.2 Quantitative Hoare Logic

The main idea by Carbonneaux et al. [4] is to generalize predicates (state⇒ B)
in Hoare triples to potentials (state ⇒ N∞). That is, Hoare triples are now of

8 Maximilian P. L. Haslbeck, Tobias Nipkow

the form {P}c{Q} where P and Q are potentials. The resulting logic does not
need logical variables. We prove soundness and completeness of that logic and
design a sound and complete VCG. Then we extend the logic and VCG to big-O
style reasoning.

Validity of triples involving potentials is defined as follows and is a direct
generalization of validity for triples involving predicates:

|=2 {P}c{Q} ≡ ∀s. P s <∞ −→ (∃t s′. (c, s)
t

=⇒ s′ ∧Q s′ <∞∧P s ≥ t+Q s′)

One may interpret the refinement from B to N∞ as follows: infinite potentials
are “impossible” and thus correspond to False, while finite potentials correspond
to True. In that way “P s < ∞” corresponds to “P holds in state s”. Further-
more, we interpret the difference of the prepotential P and postpotential Q as
an upper bound on the actual running time. Predicates can be lifted to po-
tentials by mapping True to 0 and False to ∞. We use the ↑ symbol for that
lifting: ↑P s ≡ (if P s then 0 else ∞), and similarly for boolean expressions:
↑b s ≡ (if JbKs then 0 else ∞).

`2 {P + 1}SKIP{P}
Skip

`2 {λs.1 + P (s[a/x])}x := a{P}
Assign

`2 {P + ↑b}c1{Q} `2 {P + ↑(¬b)}c2{Q}
`2 {P + 1}IF b THEN c1 ELSE c2{Q}

If
`2 {P}c1{Q} `2 {Q}c2{R}

`2 {P}c1; c2{R}
Seq

`2 {I + ↑b}c{I + 1}
`2 {I + 1}WHILE b DO c{I + ↑(¬b)}

While
P ′ ≥ P `2 {P}c{Q} Q ≥ Q′

`2 {P ′}c{Q′}
conseq

Fig. 3: Quantitative Hoare logic

The rules in Figure 3 define the Hoare logic `2 corresponding to |=2. Note
that P ≥ Q is short for ∀s. P s ≥ Q s.

Rules Skip, Assign and If are straightforward; the 1 time unit added to the
prepotential pays for, respectively, SKIP, assignment and the evaluation of the
boolean expression. The conseq rule also looks familiar, only that −→ has been
replaced by ≥. You can think of a bigger potential implying a smaller one; also
remember that False corresponds to ∞.

For the While rule, assume one can derive that having the potential I and a
true guard b before the execution of c implies a postpotential one more than the
invariant I (the plus one is needed for the upcoming evaluation of the guard,
which incurs cost 1), then one can conclude that, starting the loop with potential
I+1 (again the plus one pays for the evaluation of the guard), the loop terminates
with a potential equal to I and the negation of the guard holds in the final state.
Although this rule resembles the While rule for partial correctness, the decreasing
potential actually also ensures termination.

Theorem 5 (Soundness of `2). `2 {P}c{Q} =⇒ |=2 {P}c{Q}

Hoare Logics for Time Bounds 9

For proving completeness, we generalise the weakest precondition to the weak-
est prepotential :

wp c Q s ≡ (if ↓(c, s) then ↓T (c, s) +Q(↓S(c, s)) else ∞)

In fact, wp is also a (weakest) prepotential w.r.t. provability:

Lemma 2. `2 {wp c Q}c{Q}

As usual, completeness follows easily from this lemma:

Theorem 6 (Completeness of `2). |=2 {P}c{Q} =⇒ `2 {P}c{Q}

Verification Condition Generator The simpler Seq rule (compared to `1)
leads to a more compact VCG. Loops are simply annotated with invariants,
which now are potentials. No Conseq annotations are required.

Function pre C Q determines the weakest prepotential of an annotated pro-
gram C and postpotential Q. Its definition is by recursion on annotated com-
mands and refines our earlier pre on predicates.

The VCG recursively traverses the command and collects the verification
conditions at the loops (we omit the other cases of vc):

vc ({I}WHILE b DO C) Q =

I + ↑b ≥ pre C (I + 1) ∧ I + ↑(¬b) ≥ Q ∧ vc C (I + 1)

The two first conjuncts express invariant preservation and that the invariant
“implies” the postcondition when exiting the loop. Soundness of the VCG is
established by induction on the command.

Lemma 3 (Soundness of vc). If we can show the verification conditions vc C Q
and that we have at least as much potential as the needed prepotential (P ≥
pre C Q) then we can derive `2 {P}C{Q}.

Completeness of the VCG can be paraphrased like this: if we can derive
the Hoare Triple `2 {P}c{Q}, we can find an annotation for c such that the
verification conditions are true and P “implies” the prepotential.

Lemma 4 (Completeness of vc).
`2 {P}c{Q} =⇒ ∃C. C = c ∧ vc C Q ∧ P ≥ pre C Q

Constant factors As for the Nielson system we can extend the quantitative
Hoare logic to reason about the order of magnitude of execution time. We gen-
eralize our notion of validity from |=2 to |=2′ :

|=2′ {P}c{Q} ≡ ∃k > 0.∀s. P s <∞ −→ ∃t s′.

{
(c, s)⇒ t ⇓ s′ ∧Q s′ <∞ ∧
k · P s ≥ t+ k ·Q s′

10 Maximilian P. L. Haslbeck, Tobias Nipkow

For intuition, assume Q is zero: then the triple is valid iff the running time t is
bounded by k times the prepotential P . This amounts to O-notation.

Correspondingly we extend the set of Hoare rules `2 in Figure 3 to `2′ by
adding the following rule:

`2′ {λs. k · P s}c{λs. k ·Q s} k > 0

`2′ {P}c{Q}
const

For re-establishing soundness we can adapt the proof of Theorem 5 by cater-
ing for constants and adding one more case for rule const.

Theorem 7 (Soundness of `2′). `2′ {P}c{Q} =⇒ |=2′ {P}c{Q}

For the completeness proof, nothing changes. We reuse the same wp and the
proof of `2′ {wp c Q}c{Q} is identical to that of Lemma 2 because we extended
the Hoare rules, but not the command language. In particular this means that
the new const rule is not used in this proof. The same principle as in section 3.1
applies: the const rule is only used once at the end when showing completeness
from `2′ {wp c Q}c{Q}:

Theorem 8 (Completeness of `2′). |=2′ {P}c{Q} =⇒ `2′ {P}c{Q}

VCG with constants For the VCG we add one more annotated command
Const {k} C (where k ∈ N, k > 0). It signals the application of a const rule. We
reuse the old definitions of pre and vc but add new equations for Const :

vc (Const {k} C) Q s = (vc C (λs. k ·Q s) ∧ k > 0)
pre (Const {k} C) Q s = ediv (pre C (λs. k ·Q s) s) k

The definition of vc (Const {k} C) Q expresses that the execution of C must
leave a potential of k ·Q instead of just Q. The definition of pre (Const {k} C) Q
expresses that we pull back a potential of k ·Q but that in the end we renormalize
the prepotential by dividing (function ediv) by k. More precisely, ediv is integer
division which rounds up for non integral results and is lifted to N∞.

The soundness and completeness proofs must only be adapted marginally,
only some algebraic lemmas about ediv are needed.

To summarize this section: we have shown how to generalize conditions to
potentials, thus obtaining a compositional Hoare logic; we have extended the
Hoare logic to big-O style reasoning and have adapted the calculus and proofs;
we also have established sound and complete VCGs for both logics.

One drawback of the quantitative Hoare logic is that it is not modular. Imag-
ine two independent programs c1 and c2 that are run one after the other. When
reasoning about a subprogram c1 we need to specify a postpotential that is then
used for the following program c2. If we change c2, resulting in a changed time
consumption, also the analysis for c1 has do be redone. What we actually would
like to do, is to reason about c1 and c2 locally and then combine them in a final
step. Separation logic addresses this issue.

Hoare Logics for Time Bounds 11

3.3 Separation Logic with Time Credits

Our last logic follows the idea by Atkey [1] to use separation logic in order to
reason about the resource consumption of programs. This logic generalizes the
quantitative Hoare logic.

The principle of “local reasoning” is addressed by separation logic for disjoint
heap areas; Atkey [1] uses separation logic with time credits to reason about the
amortised execution time of (imperative) programs.

In this section we follow his ideas and design a Hoare logic based on separation
logic. As IMP does not have a heap to reason about, but we want to compare the
logic to the two logics we already described, we treat the state of a program as a
kind of heap: a partial state ps is a map from variable names to values, dom ps
is the domain of ps, we call ps1 and ps2 disjoint (ps1⊥ps2) if their domains are,
and we can add two partial states to form their disjoint union (ps1 + ps2).

We adapt evaluation of arithmetic and boolean expressions, as well as the big-
step semantics (now denoted by ⇒p) to partial states. If all necessary variables
are in the domain of the partial state ps, these new constructs coincide with their
counterparts on (full) states. The new big-step semantics rule for assignment for
example has an additional premise. All other rules are similar.

vars a ∪ {x} ⊆ dom ps

(x := a, ps)
1

=⇒p ps(x 7→ JaKps)
Assign

The new semantics admit a frame rule: we can always add disjoint partial states,
without affecting the computation.

Lemma 5.
(c, ps1)

t
=⇒p ps

′
1 ps1⊥ps2

(c, ps1 + ps2)
t

=⇒p ps
′
1 + ps2

In that way we treat the set of variables as resources, on which separation
logic can work. Additionally, as Atkey proposes, we add time credits as resources:
we consider configurations (ps, n) which are pairs of partial states and natural
numbers. Natural numbers, viewed as resources, are always disjoint and can be
added; thus they form a separation algebra [2]. A pair of separation algebras is
again a separation algebra. For predicates on configurations we thus have the ∗
operator from separation algebra

(P ∗Q)(ps, n) ≡ ∃ps1 n1 ps2 n2.

{
ps = ps1 + ps2 ∧ n = n1 + n2 ∧ ps1⊥ps2 ∧
P (ps1, n1) ∧Q(ps2, n2)

meaning that we can split up the configuration into two disjoint configurations;
one satisfying P and the other satisfying Q. Our formalization builds on an
existing Isabelle/HOL theory of separation algebras [14].

The validity of a Hoare triple is defined in the following way:

|=3 {P}c{Q} ≡ ∀ps n. P (ps, n) −→ ∃ps′ n′ t.

{
(c, ps)

t
=⇒p ps

′ ∧
n = n′ + t ∧Q(ps′, n′)

12 Maximilian P. L. Haslbeck, Tobias Nipkow

We can now state the Hoare rules for this logic, see Figure 4. Note that
$n denotes the configuration of an empty partial state and n time resources,
(b ↪→ B) ps is true, iff all variables in b are in the domain of ps and b evaluates
to B in ps. Updating the partial state ps with value v for x is denoted by
ps(x 7→ v).

` {$1}SKIP{$0}
Skip

` {(λ(ps, t). {x} ∪ vars a ⊆ dom ps ∧Q (ps(x 7→ JaKps), t)) ∗ $1}x := a{Q}
Assign

` {λ(ps, n). P (ps, n) ∧ (b ↪→ True) ps}c1{Q}
` {λ(ps, n). P (ps, n) ∧ (b ↪→ False) ps}c2{Q}

` {(λ(ps, n). P (ps, n) ∧ vars b ⊆ dom ps) ∗ $1}IF b THEN c1 ELSE c2{Q}
If

` {P}c{Q}
` {P ∗ F}c{Q ∗ F}

Frame
` {P}c1{Q} ` {Q}c2{R}

` {P}c1; c2{R}
Seq

` {λ(ps, n). I(ps, n) ∧ (b ↪→ True) ps}c{I ∗ $1}
` {(λ(ps, n). I(ps, n) ∧ vars b ⊆ dom ps) ∗ $1}

WHILE b DO c
{λ(ps, n). I(ps, n) ∧ (b ↪→ False) ps}

While

∀ps n. P ′(ps, n) =⇒ P (ps, n)
` {P}c{Q}

∀ps n. Q(ps, n) =⇒ Q′(ps, n)

` {P ′}c{Q′}
conseq

Fig. 4: Hoare logic with separation logic for reasoning about execution time

Proving soundness and completeness follows the same lines as for the quan-
titative Hoare logic, only complicated by the reasoning about partial states.

Theorem 9 (Soundness of `3). `3 {P}c{Q} =⇒ |=3 {P}c{Q}

This logic’s weakest precondition is again defined as the right-hand side of
the implication in the definition of validity:

wp c Q (ps, n) ≡ ∃ps′ n′ t. (c, s)
t

=⇒p ps
′ ∧ n = n′ + t ∧ Q (ps′, n′)

For completeness we first show `3 {wp c Q}c{Q} by induction on the command
c, and then use the definition of validity and wp to finish the proof.

Theorem 10 (Completeness of `3). |=3 {P}c{Q} =⇒ `3 {P}c{Q}

Big-O style Similar to last subsection’s system we extend the Hoare logic
based on Separation Logic to big-O style reasoning. We again generalize our

Hoare Logics for Time Bounds 13

notion of validity (now |=3′) and add a similar const rule to obtain the Hoare
Logic `3′ . Proving soundness and completeness of this new Hoare logic follows
the same lines as in the subsection before. Similarly we come up with a simple
VCG: somewhat unorthodoxly for separation logic, we use a backwards style,
as well as we do not provide annotations for abstraction from multiplicative
constants, as one final abstraction at the outer most position suffices to ensure
completeness.

The approach inspired by Nielson to incorporate abstraction from multiplica-
tive constants directly into the Hoare Logic in order to reason about the order
of magnitude of the running time of programs shows weaknesses and seems to
complicate matters. Our theoretical results show that it is always possible to
reason about the exact running time and abstract away multiplicative constants
in a last step.

4 Discussion

In this section we discuss the interrelations between the Hoare logics described
in the last section.

First we can compare the expressibility of the logics. Nielson logic |=1 and
the quantitative Hoare logic |=2′ , both big-O style logics, are equivalent in the
following sense:

Lemma 6. |=1 {bP cB}c{λs. bP s − Q(↓S(c, s))cN ⇓ bQcB} =⇒ |=2′ {P}c{Q}
where bP cB s ≡ P s <∞ and b.cN is the coercion from N∞ to N, assuming the
argument is finite.

Validity of a triple in the quantitative Hoare logic can be reduced to validity of
a transformed triple in Nielson’s logic. In the other direction this is only possible
for assertions P and Q that do not depend on the state of their logical variables:

Lemma 7. |=2′ {⇑P +e}c{⇑Q} =⇒ |=1 {P}c{e ⇓ Q} where ⇑P s ≡ (∀l.↑P l s)

The quantitative logics support amortised resource analysis. On the face of
it, Nielson’s logic does not, but Lemma 6 tells us that in theory it actually does.
However, automatic tools for resource analysis are mainly based on the potential
method, for example [12, 5].

Furthermore, as the third system based on separation logic talks about partial
states, in general it cannot be simulated by any of the other systems. This can
only be done for assertions that act on complete states:

Lemma 8. |=2′ {bP c}c{bQc} =⇒ |=3′ {P}c{Q}, when P is only true for com-
plete partial states, with bP cs ≡ infn∈N{P (bsc, n)} and bsc is the partial state
defined everywhere and returning the same results as the total state s.

On the other hand any triple in the quantitative Hoare logic |=2′ can be
embedded into the separation logic |=3′ :

Lemma 9. |=3′ {bP c}c{bQc} =⇒ |=2′ {P}c{Q}, where bP c(ps, n) ≡ (∀s. n ≥
P bpscs) and bpscs is the extension of the partial state ps by the state s to a total
state.

14 Maximilian P. L. Haslbeck, Tobias Nipkow

Example Let c be the IMP program that computes the discrete square root by
bisection:

l ::= 0 ;; r::= x + 1;; m ::= 0 ;;

(WHILE l + 1 < r DO

m ::= (l + r) / 2;;

(IF m * m < x THEN l ::= m ELSE r ::= m);;

m ::= 0)

With the simplification that the intervals between l and r are always powers
of two, we can easily show the running time to be in the order of magnitude of
1 + log x. Note that we can get rid of multiplicative constants, but not additive
ones!

For showing `1 {λl s. (∃k.1 + s ′′x′′ = 2k)}c{λs. log(s ′′x′′) + 1 ⇓ λl s. T rue)
we provide the following annotations for the while loop: I1 = λl s. s ′′l′′ ≥
0 ∧ (∃k.s ′′r′′ − s ′′l′′ = 2k), E1 = λs. 1 + 5 · log(s ′′r′′ − s ′′l′′)and S1 = λs. s;
then we use our optimized VCG and prove the remaining proof obligations.

For showing `2′ {(λs. ↑ (∃k.1 + s ′′x′′ = 2k) + (log(s ′′x′′) + 1)}c{λ .0), we
annotate the while loop with the potential I2′ = λs. ↑ (s ′′l′′ ≥ 0 ∧ (∃k.s ′′r′′ −
s ′′l′′ = 2k)) + 5 · log(s ′′r′′ − s ′′l′′).

Let us now compare the VCGs. Our VCG for Nielson’s logic requires the
annotation of loops with invariants I, running time bounds E and the state
transformers S. In contrast, the annotations required for the VCG for the quan-
titative Hoare logic are uniformly potentials. In the above example, one can see
that this annotated potential I2′ exactly contains the same information as both
I1 and E1 in the Nielson approach. The additional 1+ in E1 is needed, as E1

describes the running time of the whole loop, where I2′ describes the running
time from after evaluating the loop guard. Only more practical experience can
tell if it is better to work with separate I, E and S or with a combined invariant
potential.

In addition our annotated commands for Nielson’s system may require anno-
tations of the form Conseq {P ′, Q, e′}, whereas for the quantitative Hoare logic
we managed to reduce this to Const {k} annotations. It would be desirable to
reduce the Conseq annotations similarly.

5 Related Work

Nielson [21, 22] was the first to study Hoare logics for running time analysis of
programs. She proved soundness and completeness of her systems (on paper)
which are based on a deep embedding of her assertion language. We base our
formalization on the system given in [23] where assertions are just predicates, i.e.
functions. However, our inference system differs from hers in several respects and
our mechanized proofs in Isabelle/HOL are completely independent. Moreover
we provide a VCG and prove it sound and complete.

Possibly the first example of a resource analysis logic based on potentials is
due to Hofmann and Jost [11]. The idea of generalising predicates to potentials in

Hoare Logics for Time Bounds 15

order to form a “quantitative Hoare logic” we borrowed from [4]: Carbonneaux
et al. design a quantitative logic in order to reason about stack-space usage of
C programs. They also formally show soundness of their logic in Coq. They
employ their logic for reasoning about other resource bounds and use it as the
underlying logic for an automatic tool for resource bound analysis [6, 5]. In a
draft version of his dissertation [3] Carbonneaux complements his tool-focused
work with a theoretical treatment of an “Invariant Logic”. The relation to our
logics of Section 3.2 should be studied in more detail.

Atkey [1] proposed to use separation logic with time credits to reason about
the amortised running time of programs; he formalized his logic and its soundness
in Coq. Similar ideas were used by Hoffmann et al. [10] to prove lock-freedom of
concurrent programs, and by Charguéraud and Pottier [7] to verify the amortised
running time of the Union-Find data structure in Coq. Guéneau, Charguéraud
and Pottier [8] recently extended their framework to also obtain O results for
the running time of programs. None of these works include verified VCGs.

There is also some related work that extends to probabilistic programs.
Kaminski et al. [13] reason about the expected running time of probabilistic
programs and show that their approach corresponds to Nielson’s logic when re-
stricted to deterministic algorithms. Ngo et al. [16] extend the idea of working
with potentials to reasoning about the expected running time of probabilistic
programs.

For formal treatment of program logics [17] is a good entry point. Basic
concepts as well as formalizations of Hoare logics that lay the ground for our
work can be found in [18].

6 Conclusion

In this paper we have studied three Hoare logics for reasoning about the run-
ning time of programs in a simple imperative language. We have formalized and
verified their meta theory in Isabelle/HOL.

Further investigation is required in order to simplify the VCG for Nielson’s
logic and avoid the Conseq construct while preserving completeness of the VCG.
Extending IMP with more language features is a natural next step. Adding re-
cursive procedures should be easy (following [17]) whereas probabilistic choice
(following [20]) is much more challenging and interesting. Not only is the meta
theory of probabilistic programs nontrivial but even very small programs can be
surprisingly hard to analyze. Although we view our work primarily as founda-
tional, we expect that it could become a viable basis for the verification of small
probabilistic programs.

Data Availability Statement and Acknowledgments. The formal proof
development is available online [9]. We thank Peter Lammich for his initial help
with setting up the separation logic.

16 Maximilian P. L. Haslbeck, Tobias Nipkow

References

1. Atkey, R.: Amortised resource analysis with separation logic. In: ESOP. vol. 6012,
pp. 85–103. Springer (2010)

2. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: Logic in Computer Science, LICS 2007. pp. 366–378. IEEE (2007)

3. Carbonneaux, Q.: Modular and Certified Resource-Bound Analyses. PhD disser-
tation, Yale University (2017), forthcoming, draft at http://cs.yale.edu/homes/
qcar/diss/

4. Carbonneaux, Q., Hoffmann, J., Ramananandro, T., Shao, Z.: End-to-end verifica-
tion of stack-space bounds for C programs. In: O’Boyle, M.F.P., Pingali, K. (eds.)
Conference on Programming Language Design and Implementation, PLDI, 2014.
pp. 270–281. ACM (2014)

5. Carbonneaux, Q., Hoffmann, J., Reps, T., Shao, Z.: Automated resource analysis
with Coq proof objects. In: International Conference on Computer Aided Verifica-
tion, CAV, 2017. pp. 64–85. Springer (2017)

6. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: Grove, D., Blackburn, S. (eds.) Conference on Programming Language Design
and Implementation, PLDI, 2015. pp. 467–478. ACM (2015)

7. Charguéraud, A., Pottier, F.: Verifying the correctness and amortized complexity
of a union-find implementation in separation logic with time credits. Journal of
Automated Reasoning pp. 1–35 (2017)

8. Guéneau, A., Charguéraud, A., Pottier, F.: A fistful of dollars: Formalizing asymp-
totic complexity claims via deductive program verification. In: European Sympo-
sium on Programming (ESOP) (2018)

9. Haslbeck, M.P.L., Nipkow, T.: Hoare logics for time bounds. Archive of Formal
Proofs (Feb 2018), https://www.isa-afp.org/entries/Hoare_Time.html, For-
mal proof development

10. Hoffmann, J., Marmar, M., Shao, Z.: Quantitative reasoning for proving lock-
freedom. In: Logic in Computer Science, LICS, 2013. pp. 124–133. IEEE (2013)

11. Hofmann, M., Jost, S.: Type-based amortised heap-space analysis. In: Sestoft, P.
(ed.) Programming Languages and Systems, ESOP 2006. Lecture Notes in Com-
puter Science, vol. 3924, pp. 22–37. Springer (2006)

12. Hofmann, M., Rodriguez, D.: Automatic type inference for amortised heap-space
analysis. In: Felleisen, M., Gardner, P. (eds.) Programming Languages and Sys-
tems, ESOP 2013. Lecture Notes in Computer Science, vol. 7792, pp. 593–613.
Springer (2013)

13. Kaminski, B.L., Katoen, J.P., Matheja, C., Olmedo, F.: Weakest precondition rea-
soning for expected run–times of probabilistic programs. In: European Symposium
on Programming Languages and Systems. pp. 364–389. Springer (2016)

14. Klein, G., Kolanski, R., Boyton, A.: Separation algebra. Archive of Formal Proofs
(May 2012), http://isa-afp.org/entries/Separation_Algebra.html, Formal
proof development

15. Kleymann, T.: Hoare logic and auxiliary variables. Formal Aspects of Computing
11(5), 541–566 (1999)

16. Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: Resource anal-
ysis for probabilistic programs. In: Conference on Programming Language Design
and Implementation, PLDI, 2018 (2018)

17. Nipkow, T.: Hoare logics in Isabelle/HOL. In: Schwichtenberg, H., Steinbrüggen,
R. (eds.) Proof and System-Reliability. pp. 341–367. Kluwer (2002)

Hoare Logics for Time Bounds 17

18. Nipkow, T., Klein, G.: Concrete Semantics: With Isabelle/HOL. Springer (2014)
19. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for

Higher-Order Logic, LNCS, vol. 2283. Springer (2002)
20. Olmedo, F., Kaminski, B.L., Katoen, J.P., Matheja, C.: Reasoning about recursive

probabilistic programs. In: Logic in Computer Science. pp. 672–681. LICS ’16,
ACM (2016)

21. Riis Nielson, H.: Hoare logic’s for run-time analysis of programs. Ph.D. thesis,
University of Edinburgh (1984)

22. Riis Nielson, H.: A Hoare-like proof system for analysing the computation time of
programs. Science of Computer Programming 9(2), 107–136 (1987)

23. Riis Nielson, H., Nielson, F.: Semantics with applications: an appetizer. Springer
(2007)

