
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Code Clone Detection in Isabelle Using
Token Stream Similarity

Seifeddine Ghanouchi

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Code Clone Detection in Isabelle Using
Token Stream Similarity

Erkennung von Klonen in Isabelle Code
durch Token-Stream Ähnlichkeit

Author: Seifeddine Ghanouchi
Supervisor: Prof. Tobias Nipkow
Advisor: Fabian Huch
Submission Date: 22.05.2023

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and materials used.

Munich, 22.05.2023 Seifeddine Ghanouchi

Acknowledgments

I would like to first thank my advisor Fabian Huch for his help ranging from
explaining the core Isabelle concepts as well as in the decision making process and
providing constructive feedback throughout the span of this thesis. I would also like to
thank my partner, friends and family for their constant support and help.

Abstract

Rewriting or even copying and pasting chunks of code is commonly done by most, if
not all developers. However, having code clones inside projects can be problematic, as
it can lead to errors or a plain increase in the workload. This can be further extended
to theorem provers, such as Isabelle.
A clone detection tool was implemented previously using a token-based approach.
This approach works by looking for the longest common sequence of tokens and only
detects segments of copy-pasted code. However, the clone detection scheme should be
able to detect similar blocks, despite small changes in individual tokens. Therefore, a
fuzzy token matching algorithm is used to identify blocks of code with similar token
streams. This approach works by performing a maximum weight matching between
two lists of tokens and filtering token pairs with a similarity value lower than a chosen
threshold δ. Code blocks are considered clones if their similarity value is above a
chosen threshold ∆. The algorithm is further optimized through the use of filtering
steps to avoid unnecessary costly comparisons: we propose a signature scheme to
create a set of code clone candidates. Then we filter the candidates using a weight
condition and a relaxed matching. We conclude that the resulting clones for δ = 0.85
and ∆ = 0.8 are copy-paste as well as renamed clones. Furthermore, code blocks with a
similarity greater than 0.5 contain similar parts and statements but are not clones. We
also observe that the filtering steps greatly improve the speed of the algorithm.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Theoretical Background 2
2.1 Code Clones . 2
2.2 String Similarity Approaches . 4

2.2.1 Character-Based Approach . 4
2.2.2 Token-Based Approach . 4
2.2.3 Hybrid-Based Approach . 5

2.3 Fuzzy Token Matching . 6
2.4 Signatures in Fuzzy Token Matching . 6
2.5 Isabelle Code Structure . 7

3 Related Work 8
3.1 Clone Detection Schemes for Isabelle Code 8

3.1.1 Token-Based Clone Detection Using Suffix Trees in Isabelle . . . 8
3.1.2 Clone Detection on Isabelle Terms based on Abstract Syntax Trees 8

3.2 String Matching Approaches . 8
3.2.1 Running Karp-Rabin Greedy String-Tiling Algorithm 8
3.2.2 Fast-join: An efficient method for fuzzy token matching based

string similarity join . 9

4 Fuzzy Token Matching in Isabelle 10
4.1 Token Markup . 10
4.2 Token Comparison Scheme . 11
4.3 Token Matching . 12
4.4 Optimizations . 14

4.4.1 Signature Schemes . 14
4.4.2 Weight Condition . 16
4.4.3 Relaxed Matching . 17

v

Contents

4.5 Summary . 18

5 Result Evaluation 20
5.1 Analysis of Sample Results . 20
5.2 Analysis of the Filtering Steps . 21

5.2.1 Analysis of the pruned possibilities 22
5.2.2 Influence on the speed of the clone detection 22

6 Conclusion 25

7 Future Work 26
7.1 Improvements to the Proposed Algorithm 26
7.2 Outlook and Further Features . 27

List of Figures 28

List of Tables 29

Bibliography 30

vi

1 Introduction

When we need to reuse a functionality that has been already implemented, whether
online or in a local project, a common practice is to just copy and paste the given code.
It is also common to reuse the same chunk of code in more than one location. There are
multiple reasons behind this behavior. These reasons include the following [RBS13]:

• Time constraints: programmers need to finish a task as fast as they can.

• Complex project: if programmers do not understand the structure of a system,
they tend to copy existing functionality and logic instead of writing their own.

• Programming language issues: if a programmer is not very familiar with a
specific programming language, they often end up copying and reusing code
chunks instead of writing their own.

However, these issues lead to the presence of code clones in the project. Having multi-
ple clones means that whenever that specific part needs to be updated, each clone of
the code needs to be individually updated, therefore increasing the workload [RC07].
Additionally, it is common to forget to update one of the clones or more, which leads
to errors or inconsistent behavior. Therefore, the presence of code clones should be
avoided as much as possible.

Isabelle is a generic proof assistant. It is used to express mathematical formulas
in a formal language and to prove these formulas in a logical calculus. Isabelle comes
with a large theory library of formally verified mathematics1. Therefore, the topic
of code clone detection is relevant to Isabelle as well. In this work, we propose an
algorithm to detect code clones or code blocks with a high degree of similarity.

1https://isabelle.in.tum.de/overview.html

1

2 Theoretical Background

In this chapter, the necessary theoretical background is presented. First, we present a
few code clone types. Then we discuss different metrics and methods for how they can
be identified. Furthermore, we present the necessary context for Isabelle.

2.1 Code Clones

As stated by Qurat Ul Ain et al., there is no formal definition of a code clone. They
can be chunks of similar code as well as blocks of identical code. Code clones are
categorized using these four basic types [Ain+19]:

• Exact clones (Type 1): Code segments that are identical, excluding comments,
line breaks and white spaces.

• Renamed clones (Type 2): Code segments that are identical syntactically or
structurally but have different identifiers, types, literals and layouts.

• Near miss clones (Type 3): Code segments with a similar structure and syntax
but with some statements being added, deleted or modified.

• Semantic clones (Type 4): Code segments that are written differently but are
functionally similar.

Figure 2.2 shows examples of the different code clone types based on the pseudo-code
in Figure 2.1. A clone of type 1 is represented in (a). The only difference compared to
the base code is a line break. An example of type 2 is written in (b). This can be seen
through the renamed function and variable from hello_world to not_hello_world and
from result to hello. Subfigure (c) shows a type 3 clone by omitting a statement.
A clone of type 4 is represented in (d). This can be seen by the different structure
to accomplish the same task: instead of directly printing the string, each character
is individually printed. Clones of types 1, 2 and 3 have a lot of textual similarities.
Therefore, they can be detected using different string similarity algorithms. However,
the detection of type 4 clones requires semantic approaches, where the logic and
functionality of the different code blocks is compared. The focus of the work is
detecting types 1 and 2, as well as some type 3 code clones.

2

2 Theoretical Background

void hello_world(){
String result = "hello world!";
println(result);

}

Figure 2.1: Example base pseudo-code

void hello_world()
{
String result="hello world!";
println(result);

}

(a)

void not_hello_world() {
String hello = "hello world!";
println(hello);

}

(b)

void not_hello_world() {
println("hello world!");

}

(c)

void not_hello_world() {
String result = "hello world!";
for (int i = 0; i < result.length; i++) {

print(result.charAt(i));
}
println();

}

(d)

Figure 2.2: Example code clones of the four main types

3

2 Theoretical Background

2.2 String Similarity Approaches

String matching tools are a reliable solution to detecting code clones of types 1, 2 and 3
[Ain+19]. The following sections present the main three approaches to string matching.

2.2.1 Character-Based Approach

The similarity between two given strings is measured using the individual characters
of the strings. A common metric to measure the string similarity in a character-based
approach is the edit distance (ED). ED of the strings S and S′ is the minimum number of
single-character edit operations to transform S into S′ or vice versa. A single-character
edit operation is one of three possibilities: it is either the addition, the deletion or the
modification of a selected character. The ED can be measured using multiple algo-
rithms, among them is the Levenshtein distance [GF13]. For example, ED(“bachelor
thesis”, “bachelor theses”) = 1, whereas ED(“string match”,“match string”) = 12.
These examples show that changing individual characters in words without altering
their order keeps the ED relatively small, indicating a great similarity between strings.
However, changing the order of words leads to a noticeably higher ED, despite the
sentences being similar. Another disadvantage of the ED is the difficulty of interpreting
its results: the same ED value may indicate that two short strings are entirely different
but also that two long strings are very similar.

The normaized ED (NED) is a workaround for this last disadvantage: NED(S, S′) ∈
[0, 1] with 1 or 0 indicating that S and S′ are identical or completely different, respec-
tively. NED is commonly referred to as edit similarity and is calculated with the
following formula:

NED(S, S′) = 1 − ED(S, S′)

max(|S|, |S′|)
Despite the NED solving the problem of interpreting the results, it still fails at assessing
the similarity of strings with the same words in different order.[WLF11]

2.2.2 Token-Based Approach

This approach consists in dividing each given string into a set of substrings, referred
to as tokens. The token set of a string is created following a tokenization scheme,
for example dividing the string into different words based off of whitespaces. For
two given strings S and S′ with their respective token sets T and T′, the similarity is
calculated based on T ∩ T′.

4

2 Theoretical Background

The following formulas are some metrics for measuring the token-based similarity
[GF13]:

• Dice Similarity: DICE(S, S′) = 2.|T∩T′|
|T|+|T′|

• Cosine Similarity: COSINE(S, S′) = |T∩T′|√
|T|+|T′|

• Jaccard Similarity: JACCARD(S, S′) = |T∩T′|
|T|+|T′|−|T∩T′|

An advantage that token-based approaches offer compared to character-based ones
is the following: when using tokens, the order of different words does not affect the
similarity. For example, the two strings S = ”match string” and S′ = ”string match”
with their respective token sets T = {"match","string"} and T′ = {string","match} have
the following properties:

T = T′ = T ∩ T′

DICE(S, S′) = COSINE(S, S′) = JACCARD(S, S′) = 1

These results indicate that the token sets are considered identical and hence the strings
similar.
The main disadvantage in this approach is that T ∩ T′ only includes tokens that are
present in both T and T′. This means that tokens that are similar but not identical
are not in T ∩ T′. For instance, the strings S = ”bachelor thesis” and S′ = ”Bachelor
Thesis” with token sets T = {”bachelor”, ”thesis”} and T′ = {”Bachelor”, ”Thesis”}
have a similarity of 0, despite the only difference being two letters.[WLF11]

2.2.3 Hybrid-Based Approach

Hybrid approaches combine the two previous approaches to compensate for the disad-
vantages of both. This method extends the character-level operator on the token-level.
This means that each pair of tokens will be compared using the character-based
approach. An example usage of the hybrid approach is the approximation of gen-
eralized edit similarity (AGES) [WLF11]. This metric iterates through each token
and finds the token in the other set with the highest edit similarity and saves this
value. The AGES is the average of the saved edit similarities. This method does
not follow the symmetry property, making it inconsistent in judging the similarity
between two texts. For example, the two strings S ="string search" and S′ ="string
matching research" get divided into the token sets T = {” string ”, ” search”} and
T′ = {”string”, ”matching”, ”research”} respectively. To calculate AGES(S, S′), the to-
kens in T get the following assignments: (”string”, ”string”) and (”search”, ”research”).
Therefore AGES(S, S′) = NED(”string”,”string”)+NED(”search”,”research”)

2 = 0.875 Similarly,

5

2 Theoretical Background

AGES(S′, S) = NED(”string”,”string”)+NED(”research”,”search”)+NED(”matching”,”string”)
3 = 2

3
Fuzzy token matching is another example of a powerful hybrid-based method to solve
the string similarity problem [WLF11]. This method is discussed further in the next
subsection as well as Chapter 4, since it is the adopted method in this work.

2.3 Fuzzy Token Matching

Fuzzy Token Matching is a hybrid-based approach. This method works by first
tokenizing the strings, obtaining a list or a set of tokens for each string. Unlike the
token-based approach, tokens do not need to be identical. Instead, they are considered
similar if their edit similarity is above a chosen threshold δ. The similarity of two strings
is then based on the set T

∼
∩δ T′. This set is obtained by first calculating the similarity

of each pair of tokens (t, t′) with t ∈ T and t′ ∈ T′. Afterwards, a weighted bipartite
graph (bigraph) G((T, T′), E) is constructed. (T, T′) are the vertices representing each
token. E represents the set of weighted edges between T and T′. Each weight is based
on the edit similarity of its two vertices. Next, using the bigraph, a maximum weight
matching is found using a matching algorithm like the Hungarian algorithm [Ber81].
In this matching, each token is paired with the closest available token from the other
set, therefore obtaining a set of token pairs. Finally, these token pairs are filtered using
the given threshold δ to obtain the resulting set or list T

∼
∩δ T′. The metrics mentioned

previously can be adapted for the fuzzy token matching by replacing T ∩ T′ with
T

∼
∩δ T′.

2.4 Signatures in Fuzzy Token Matching

Maximum weight matching algorithms are expensive. In fact, the Hungarian algorithm
has a complexity of O(n3). Therefore, it is best to avoid unnecessary comparisons when
looking for similar token sets among an important number of sets. Signatures are used
to filter out as many token set pairs as possible. Signatures work similarly to hash
values. They are generated through signature schemes. Signatures are used based on
the following principle: Two token sets T and T′, their signature sets are Sig(T) and
Sig(T′) respectively. If T and T′ are similar, then Sig(T) ∩ Sig(T′) ̸= ∅. By reversing
this property, we get: if Sig(T) ∩ Sig(T′) = ∅, then T and T are not similar, making
their comparison unnecessary [Qin+11]. Different similarity metrics require different
signature schemes. Additionally, the quality of the signature scheme affects how often
signature sets overlap without the token sets being similar. The choice of signature

6

2 Theoretical Background

scheme and discussion of its quality is further discussed in Chapter 4.

2.5 Isabelle Code Structure

Isabelle is a generic and interactive proof assistant. It allows the user to write mathe-
matical definitions and formulas and prove them in a logical calculus.
The Isar proof language is divided into inner syntax and outer syntax. Inner syntax is
used to express the terms, while outer syntax represents the Isabelle theory specifica-
tions and proof structure. Inner syntax is used to represent Isabelle types and terms of
the logic within the outer syntax[Wen22b].
Isabelle code follows a specific tokenization scheme based on the outer syntax of the
language. Each keyword, command literal etc. is considered a token. Therefore, a
long term written in inner syntax is also considered a single token. Consequently,
simply exporting the text of the source code to detect string similarity does not provide
accurate results.
Isabelle code is written in .thy files. A collection of related theories and files is called a
session. It essentially resembles a project in common IDE environments.[Wen22a]

7

3 Related Work

3.1 Clone Detection Schemes for Isabelle Code

In this section, we discuss the previous clone detection approaches used for Isabelle.

3.1.1 Token-Based Clone Detection Using Suffix Trees in Isabelle

A token-based clone detection tool has been implemented for Isabelle. This approach
uses suffix trees to detect matching code segments. A suffix tree is a data structure
that stores substrings in a tree-like structure. It is widely used in pattern matching
and string compression algorithms. The developed tool imports selected sessions and
concatenates all their tokens to perform a longest common substring search.
As mentioned in the previous section, this token-based approach works using exact
string-equality. Therefore, it can reliably detect clones of type 1 and a few clones of
type 2 but it is not suited to detect any other type. [Ham22]

3.1.2 Clone Detection on Isabelle Terms based on Abstract Syntax Trees

A different code clone detection scheme has been implemented for Isabelle with a focus
on Isabelle inner syntax terms instead of the Isabelle source code. This approach uses
abstract syntax trees to detect clones: instead of comparing the source code of inner
syntax strings, their parsed abstract syntax tree structures are compared. The goal of
this approach was to find clones of type 3. However, mainly clones of type 1 were
found. [Ste23]

3.2 String Matching Approaches

In this section, we introduce some algorithms of string matching.

3.2.1 Running Karp-Rabin Greedy String-Tiling Algorithm

Running Karp-Rabin Greedy String-Tiling (RKR-GST) is a comparison algorithm sug-
gested by Michael Wise. In order to compare two strings, we search for unique matches

8

3 Related Work

of substrings from two token strings. Additionally, we calculate hash values for each
token and only compare tokens with the same hash value [Wis93]. This comparison
algorithm is used in multiple code clone detection tools, such as YAP3 and JPlag. YAP3
is a tool developed to detect text plagiarism and can be used on different programming
languages. JPlag is a tool developed to detect plagiarism in Java code. It can also be
used to detect clones of C, C++ and Scheme [KL09].

3.2.2 Fast-join: An efficient method for fuzzy token matching based string
similarity join

Fast-Join is a method proposed by Jiannan Wang, Guoliang Li and Jianhua Feng. This
method is a hybrid-based string matching algorithm. It uses signature schemes as well
as bipartite graph matching to solve the string similarity problem. The fuzzy-token
similarity metrics mentioned previously in Chapter 2 were proposed and discussed.
A few signature schemes are presented and compared. The algorithm presented in
Chapter 4 is based on the Fast-join algorithm. [WLF11]

9

4 Fuzzy Token Matching in Isabelle

Fuzzy token matching consists of comparing each pair of strings or code blocks to
decide whether or not they are similar. Each comparison is based on one of the similar-
ity metrics mentioned previously. Therefore, to perform this comparison, a bigraph
matching of the two token sets is performed, and the token pairs with a similarity
smaller than δ are filtered. If the similarity value of the two code blocks is greater than
a chosen threshold ∆, the blocks are considered clones. This process solves the problem
of fuzzy clone detection. A direct approach consists of iterating through every pair of
code blocks and comparing them. However, the matching of the bigraph is an algorithm
that requires a lot of time. Additionally, the number of token sets to compare can be
very high, depending on the sessions included. Therefore, three filtering steps are used
to create a set of candidates as well as filter out as many unnecessary comparisons as
possible. Once candidates have been chosen, the bigraph matching is applied on them
as a verification step. Figure 4.1 showcases how the steps of the algorithm.

In this chapter, we discuss each step of the algorithm. We first discuss how code
blocks are created. Then, we introduce a new comparison scheme for individual Is-
abelle tokens. This comparison scheme is used to evaluate the similarity of two code
blocks. Then we discuss how the maximum weight matching is performed. Finally, we
introduce three optimization steps: a signature scheme for Isabelle tokens, a weight
condition and a relaxed version of the matching.

4.1 Token Markup

In this section, we discuss the topic of dividing the Isabelle files into code blocks.
This process is performed in two main steps: first, the source code is divided into
separate command spans. Each command span contains a command token as well as
the corresponding follow-up tokens. Second, these command spans are then divided
into two categories: append commands and main commands. Each append command
span is aggregated to the nearest main command span before it. Once all append
commands have been aggregated, the result is a set of separate code blocks. This

10

4 Fuzzy Token Matching in Isabelle

Source Code

Token Markup

Token Sets Filtering

Clone candidates Verification

Code Clones

Figure 4.1: Overview of the Fuzzy Token Matching using the Filtering Steps

method is based on the data model in the tool FindFacts 1[HK22]. The resulting data
structure has the following parameters:

• File index indicates which theory file contains this block.

• Start and end lines indicate the line interval of a code block.

• Token lists are a representation of the code block. A first list contains all tokens of
the command spans. A second list is also created that contains all non-whitespace
tokens of the code block. In other words, all tokens that are relevant for the next
sections.

As shown in Chapter 2 for token- and hybrid-based string similarity metrics, the size of
a string and the similarity of strings are based on the number of tokens. However, inner
syntax tokens in Isabelle can be noticeably longer than outer syntax tokens. Therefore,
each individual token as well as token list is assigned a weight value that represents its
practical size. All outer syntax tokens have a weight of 1, whereas inner syntax tokens
have a weight equal to their number of constants.

4.2 Token Comparison Scheme

In usual string matching problems, tokens are substrings. However, in Isabelle, a Token
is a defined class with two parameters that are relevant to this topic: kind is a parameter
that indicates the role of the token in the code. content is an additional parameter that
represents the content of the token itself. Therefore, the token comparator uses these

1FindFacts is a search tool for formal Isabelle Theory content. In this work, Isabelle source code is
partitioned into text blocks using Isabelle commands: each code block is a set of semantic entities
grouped together.

11

4 Fuzzy Token Matching in Isabelle

two parameters to determine the similarity of two tokens.

The most common case for token comparison is calculated in two steps: first, the
two token kinds are compared to assign a coefficient to the comparison at hand. These
coefficients indicate how similar the token kinds are. The possible values are 1 for
identical kinds, 0.9 for kinds that are very similar and 0 for kinds that are completely
different. The idea behind coefficients is to consider the possibility that two tokens with
different kinds can still be similar. For example, the different string-type or number-
type tokens are similar. If the coefficient for two tokens has been calculated and is 0,
the token similarity will return 0 by default. If not, the result of the comparison is the
product of the coefficient and the content edit similarity.

In some cases, however, the contents of the two tokens are not important for the
token similarity. For example, when variables have names that are completely different,
but the code blocks containing them are similar. These cases get assigned a minimum
value. Another example would be command tokens that represent similar function-
alities such lemma and theorem. We assigned predetermined values to handle these
specific cases.

The tokens with the kind CARTOUCHE are inner syntax tokens. Their comparison is
different from the rest of the tokens. The method for comparing these tokens falls out-
side of the scope of this work because their term trees can be compared in a structured
way. Therefore, a placeholder method is used to evaluate the similarity of inner syntax
strings: they are divided into a set of substrings referred to as constants. The similarity
value is calculated using the formula:

InnerSyntaxSimilarity(t1, t2) =
|const1 ∩ const2|

max(|const1|, |const2|)
The token comparison scheme is summarized through Figure 4.2. In this flowchart,
the process for comparing token kinds checks whether the kinds are similar. Addition-
ally, the IS comparison process currently represents the placeholder implementation,
whereas the normal comparison represents all other non-null cases mentioned above.
Once token comparison is possible, the next step is to compare code blocks. Their
similarity is evaluated by performing the matching of tokens in their given token lists.

4.3 Token Matching

Two given token sets are compared using a bigraph matching. To perform this, a bigraph
is constructed. The vertices are the tokens of the two code blocks. An edge connecting

12

4 Fuzzy Token Matching in Isabelle

Start

Token Pair

Compare Token Kinds

Similar?IS Comparison Normal Comparison

0.0 Comparison ResultIS Result

Stop

not similar

similar
both are IS

Figure 4.2: Flowchart for the Token Comparison Scheme

13

4 Fuzzy Token Matching in Isabelle

two vertices uses the similarity of their tokens as a weight. For the implementation, the
graph is represented using its cost matrix. The result of the matching is a set of token
pairs, where each token from one set is matched to the closest available token with
the highest weight from the other set. The algorithm used to perform the matching
is the Hungarian algorithm with a complexity of O(n3) [Ber81], which is a common
algorithm to compute the maximum cost matching. The similarity of the code blocks
is evaluated using the fuzzy-Jaccard similarity. If the results are above the chosen
threshold ∆, the code blocks are considered clones. When defined in Chapter 2, the
fuzzy-Jaccard similarity is based on the cardinality of each token list. In this work, we
use the weight of each code block instead:

FJACCARDδ(S, S′) =
weight(T

∼
∩δ T′)

weight(T) + weight(T′)− weight(T
∼
∩δ T′)

4.4 Optimizations

The matchings with a high enough similarity are the final result of the fuzzy token
matching. However, matching algorithms including the Hungarian algorithm have a
high run time complexity. Additionally, the number of comparisons to perform scales
quickly with the number of code blocks to compare. In fact, for n code blocks, the
number of comparisons is n·(n−1)

2 . These factors lead to very long run times. Therefore,
the number of comparisons is reduced through the use of a signature scheme, a
condition connecting the weights of two code blocks and a relaxed version of the
matching algorithm. After these filtering steps are performed, a token matching as
explained in Section 4.3 is performed for all the remaining code block pairs to filter
out the last candidates and obtain the final results. This final step is referred to as the
verification step.

4.4.1 Signature Schemes

In order to reduce the running time, signatures schemes are an efficient tool to avoid
unnecessary comparisons. The intuition behind signatures is as follows: from each
list of tokens, a multi-set of signatures is generated. The signature multi-sets are then
compared to determine which code blocks are not similar and which remain as clone
candidates. Using this principle, signatures are used to filter out as many pairs of code
blocks as possible. As stated in Chapter 2, if two token sets or lists are similar, then their
signature multi-sets intersect. However, two code blocks are only considered clones
if their similarity is above the chosen threshold ∆. Therefore, the simple existence of
an intersection between the signature multi-sets is not enough to consider a pair of

14

4 Fuzzy Token Matching in Isabelle

code blocks to be candidates. Instead, a threshold θ for the size of the intersection is
computed to eliminate more code block pairs. In this subsection, the signature scheme
for Isabelle code is explained, as well as the choice of two possible signature intersection
thresholds.

Signature Scheme for Isabelle Code
The signature scheme works as follows: the tokens of a code block are iterated through,
calculating the signature or signature multi-set of each token individually. The signature
multi-set of a code block is the union of all signatures of its tokens.
The core concept of an individual token signature is to generalize it without a loss of
its meaning. In other words, if two tokens play a similar role, their signature is the
same. Whereas two tokens that play different roles get assigned different signatures.
This is accomplished using the Signature_Value enum. This enum represents some
sets of simple and important values. For example, the commands {lemma, theorem
and corollary} are represented using the value LEMMA, natural numbers and floats are
represented using the value NUMBER and all type identifiers are represented using the
value IDENT etc. Additionally, inner syntax constants are all represented using the CONST
value. The actual token signature is an instance of the Token_Signature class. This
class has two main parameters: a Signature_Value instance as well as an additional
string. For a given outer syntax token, its signature is defined using the corresponding
enum value and an empty string. For an inner syntax string, each constant has its own
signature as well as the string representation of the constant itself. This implies that
every inner syntax string gets assigned a multi-set of signatures. Table 4.1 showcases
examples for different tokens. As explained previously, the two commands lemma and
theory are assigned the same signature due to a similar functionality. Meanwhile,
section serves a different purpose and therefore gets assigned a different signature.
Additionally, as shown in the last example, the inner syntax token is assigned a
signature for each constant.

Intersection Threshold
In order for two code blocks to be considered candidates this inequality needs to be
valid:

weight(T
∼
∩δ T′) > ∆ · max(weight(T), weight(T′))

As explained in the previous paragraph, each outer syntax token gets assigned exactly
one signature, whereas an inner syntax string with n constants gets assigned n signa-
tures, with n ≥ 1. Therefore, |Sig(T)| ≥ |T| and |Sig(T)| = weight(T).
We propose the intersection threshold θ1. It is calculated for two given token lists T1

15

4 Fuzzy Token Matching in Isabelle

Token(COMMAND, "lemma") Signature(LEMMA)
Token(COMMAND, "theorem") Signature(LEMMA)
Token(COMMAND, "section") Signature(SECTION)

Token(IDENT, "x") Signature(IDENT)
Token(CARTOUCHE,"<A/><rightarrow/>") Signature(CONST,"A")

Signature(CONST,"rightarrow")
Signature(CONST,"B")

Table 4.1: Examples of Signatures for Different Tokens

and T2 as follows:
θ1 = ∆ · max(|T1|, |T2|)

We propose a second intersection threshold θ2. This variant uses the following proper-
ties: on the one hand, if two outer syntax tokens t1 and t2 match, then sig(t1) = sig(t2).
On the other hand, if t1 and t2 are IS tokens and they match, then:

IS_Similarity(t1, t2) ≥ δ

This property can be rewritten as follows:

|const1 ∩ const2| ≥ δ · max(|const1|, |const2|)

Therefore, the intersection threshold θ2 for two token lists T1 and T2 is calculated using
the following formula:

θ2 = ∆ · max(sim(T1), sim(T2))

with sim(T) being the smallest number of signatures that can lead to a perfect match
with T. For a token list T with n1 outer syntax tokens {t1...tn1} and n2 IS tokens
{IS1...ISn2}, sim(T) is calculated using the following formula:

sim(T) =
n1

∑
i=1

weight(ti) +
n2

∑
i=1

δ · weight(ISi) = n1 +
n2

∑
i=1

δ · weight(ISi)

Furthermore, θ2 ≥ θ1, making it a stricter threshold. That means it leads to a smaller
number of candidates. However, the formula is slower to compute. The performance of
the two variants is compared in Chapter 5.

4.4.2 Weight Condition

In order for two code blocks to be considered similar, the result of the similarity function
should be higher than a given threshold ∆ ∈ [0, 1]. This condition can be expressed

16

4 Fuzzy Token Matching in Isabelle

using the fuzzy-Jaccard similarity metric as follows:

weight(T
∼
∩δ T′)

weight(T) + weight(T′)− weight(T
∼
∩δ T′)

> ∆

The relation between the weights of T and T′ is as follows:

∆ · weight(T′) < weight(T) <
1
∆
· weight(T′)

In other words, a token set T′ can only be similar to a token set T if the following
property is valid:

weight(T′) ∈ [∆ · weight(T),
1
∆
· weight(T)]

Therefore, any pair of code blocks that does not fulfill this condition is pruned.

Proof.
weight(T

∼
∩δ T′)

weight(T) + weight(T′)− weight(T
∼
∩δ T′)

> ∆

=⇒ weight(T
∼
∩δ T′) > ∆ · (weight(T) + weight(T′)− weight(T

∼
∩δ T′))

=⇒ (1 + ∆) · weight(T
∼
∩δ T′) > ∆ · weight(T) + ∆ · weight(T′)

=⇒ ∆ · weight(T) < (1 + ∆) · weight(T
∼
∩δ T′)− ∆ · weight(T′)

Additionally, we have the property: weight(T
∼
∩δ T′) < weight(T′)

=⇒ ∆ · weight(T) < (1 + ∆) · weight(T′)− weight(T′)

=⇒ weight(T) <
1
∆
· weight(T′)

4.4.3 Relaxed Matching

To reduce the run-time of the matching phase of the algorithm, the matching can be
relaxed as follows: each token gets paired up to the closest token of the other set, even
if it has already paired up with another token already. Because of this relaxed method,
the Fuzzy-Jaccard similarity threshold ∆ is easier to reach, which potentially leads to
false positives. However, if the relaxed matching does not reach ∆, then the original
matching cannot reach it either. In other words, this does not introduce false negatives
to the results.

17

4 Fuzzy Token Matching in Isabelle

4.5 Summary

A summary of the implemented algorithm is represented in Figure 4.3. First, theory
files are parsed and divided into code blocks represented by their token lists. Candidate
clones are then selected when their signature multi-sets have an intersection greater
than θ. These candidates are then further trimmed down using the weight condition
as well as relaxed matching. Finally, the remaining candidates are evaluated using
the bigraph matching. If their similarity is above the chosen threshold ∆, they are
considered clones.

18

4 Fuzzy Token Matching in Isabelle

Start

Theory Files

Token Markup

Code Blocks

Filtering Steps

Candidates

Verification

Clones

Stop

Figure 4.3: Flowchart Summarizing the Optimized Fuzzy Token Matching Algorithm

19

5 Result Evaluation

We evaluate the results on two levels: first the results are evaluated on a qualitative
level. This means how close two code blocks are for different similarity values. The
second evaluation is for the speed of the algorithm. This includes discussing the effects
of the different filtering steps as well as the speed of the algorithm with and without
using the filtering steps.

5.1 Analysis of Sample Results

In this section, the results of the clone detection will be evaluated. Examples of different
code blocks with different similarity values are examined. After a short series of
qualitative experiments, we observed that token similarity thresholds δ = 0.85 leads to
more reliable results. In other words, this threshold allows for the individual tokens to
have a fuzzy similarity instead without being very different and without needing to be
identical.
The example in Figure 5.1 shows a clone of type 1. This clone consists of the code blocks
conj_cong in lines (330, 338) and conj_cong2 in lines (339, 347) in the file IFOL.thy.
The fuzzy-Jaccard similarity of these two blocks is equal to 1. That means that all
tokens in both code blocks have a match with a similarity higher than δ = 0.85. The
code blocks are nearly identical. In fact, there are two small differences: first, the names
of the lemmas have a difference of 1 character. Second, the order of the constants P and
Q as well as P’ and Q’ is swapped in the fourth line of both code blocks.
A second example of a code clone is shown in Figure 5.2. In this example, the lemmas
are impCE and impCE’ in FOL.thy in lines (83, 92) and (98, 108) respectively. The
similarity of the code blocks using the Fuzzy-Jaccard similarity measure is 0.96. In this
case, the lemmas are clones of type 2. This can be seen through the different names of
the lemmas as well as the swapped names of r1 and r2.
The two previous examples show that high similarity values indicate code clones of
types 1 and 2
The Figure 5.3 shows the lemma conj_cong again along with the lemma imp_cong in
lines (355, 363) in IFOL.thy. The fuzzy-Jaccard similarity for these blocks is 0.55. These
lemmas lead to different outcomes. Therefore they are not clones. However, the two

20

5 Result Evaluation

Figure 5.1: Example of two code blocks in IFOL.thy with a similarity value of 1.0

Figure 5.2: Example of two code blocks in FOL.thy with a similarity value of 0.96

lemmas have multiple common lines. This indicates that code blocks with a lower
similarity contain similar parts. Which means that it is possible to find clones of type 3,
if the functionality or result of the blocks is the same.

5.2 Analysis of the Filtering Steps

In this section, the efficiency of the filtering steps is evaluated. This analysis takes
two factors into consideration: the number of filtered elements and the speed of the
algorithm. After short experiments, we observed that smaller code blocks with a basic
structure are often considered clones. Therefore, only code blocks with weights greater
or equal to 40 are taken into consideration. Furthermore, the similarity thresholds in
these tests are δ = 0.85 and ∆ = 0.8

21

5 Result Evaluation

Figure 5.3: Example of two code blocks in IFOL.thy with a similarity value of 0.55

5.2.1 Analysis of the pruned possibilities

In this step, the efficiency of the filters is evaluated from a quantitative standpoint. We
analyze how many possible combinations of code blocks are pruned using the different
filtering steps. The two variants explained in section 4.4.1 are analyzed and compared.
The Table 5.1 and Table 5.2 represent the number of code blocks as well as the number
of possibilities initially and after each step of the clone detection algorithm.
As shown in Table 5.1, the use of the threshold θ1 prunes at least 83% of the possibilities.
The weight condition further reduces the number of candidates, whereas the relaxed
matching only leaves a few non-clone candidates left.
Table 5.2 shows different values. Since θ2 ≥ θ1, the number of of candidates after using
signatures is noticeably smaller than in variant 1. In other words, at least 90% of the
candidates are filtered. A further consequence of the stricter threshold is the result
of the weight condition. In fact, it leads to a negligible number of pruned elements,
making it obsolete. Therefore, it is not used in the next tests for this variant.

5.2.2 Influence on the speed of the clone detection

In this subsection, the speed of the implemented algorithm is evaluated. The evaluation
is based on performance benchmarks. All tests were performed on a Ubuntu Linux
machine with 12GB of RAM. The benchmark tests were done while only using the token
matching to detect clones. The remaining tests were done on the same sessions using
both variants of the optimized algorithm. Furthermore, seeing as the weight condition
is obsolete in variant 2, it was only used to measure the time for variant 1. All results
are displayed in Figure 5.4. This bar graph represents the different run-times of the
aforementioned algorithm versions for the sessions Sequents, FOL, CCL and ZF. The run-

22

5 Result Evaluation

Session Sequents FOL CCL ZF HOL
N° of command spans 27 49 96 356 2538

N° of possible combinations 351 1176 4560 63190 3219453
Signature candidates 37 210 397 7165 88587

Weight condition filtering 25 149 227 7013 76987
Relaxed matching filtering 6 3 9 23 148

N° of clones found 6 3 9 18 106

Table 5.1: Number of possible candidates in each step using the signature threshold
variant 1 for different sessions

Session Sequents FOL CCL ZF HOL
N° of command spans 27 49 96 356 2538

N° of possible combinations 351 1176 4560 63190 3219453
Signature candidates 13 20 73 6766 64529

Weight condition filtering 13 19 72 6765 64507
Relaxed matching filtering 6 3 9 23 148

N° of clones found 6 3 9 18 106

Table 5.2: Number of possible candidates in each step using the signature threshold
variant 2 for different sessions

23

5 Result Evaluation

Sequents FOL CCL ZF
0

100

200

300

400

2.1 1.9 8.9

312

0.2 0.2 0.5
15

0.2 0.3 0.8
15

Session

Ti
m

e(
s)

No filtering
Variant 1
Variant 2

Figure 5.4: Bar graph of the running times of the 3 versions of the algorithm with
corresponding optimizations for multiple sessions

times are displayed in seconds on the y-axis. These figure show great improvements in
the runtimes of the different sessions. In fact, the optimized versions of the algorithms
consistently take less than 10% of the time needed for the non-optimized version.
Further tests were performed on the session HOL. The run-times of these tests were 716
seconds and 713 seconds for variants 1 and 2 respectively. After running for longer than
2 hours, the test led to an out of memory error for the non-optimized version. These
tests indicate that the optimizations improve both memory usage as well as speed of
the algorithm. The difference in running time for both optimized variants is negligible
in all the sessions, indicating a comparable performance.

24

6 Conclusion

In this thesis, we implemented a fuzzy token matching algorithm for Isabelle code.
We first implemented a token comparator that takes the different token kinds, edit
similarity of their contents and further specific cases into consideration. Then we
evaluated the similarity of two code blocks by performing a maximum weight matching
on their respective token lists. Despite precise results, the matching algorithm was very
costly and slow. Therefore, we implemented three main optimization phases, which are
filtering steps. First, we implemented a signature scheme for Isabelle. We use signatures
to determine whether two code blocks are clone candidates. Second, we implemented
a condition connecting the weights of two code blocks with one another. Any pair
of code blocks that does not fulfill this condition is pruned. Third, we implemented
a relaxed but cheaper version of the token matching algorithm to further reduce the
number of candidates. Afterwards, the maximum weight matching is performed on
the remaining candidates to verify if they are clones or not. This final step is called the
verification step. The results of the clone detection algorithm can be divided into two
groups depending on the similarity value of the code blocks. The code blocks with
a similarity value greater or equal to 0.85 were copy-paste clones as well as renamed
clones. The code blocks with a similarity between 0.5 and 0.6 lead to inconsistent
results: they are often functionally unrelated but contain similar parts and lines. The
different optimizations of the algorithm led to great improvements in the running
time of the algorithm. In fact, the optimizations consistently prune at least 90% of the
possible code block combinations and make the clone detection scheme more than 10
times faster. For example, the clone detection on HOL, a session with a lot of code
blocks takes longer than 2 hours without optimizations, whereas it takes 12 minutes
using the filtering steps.

25

7 Future Work

This chapter is divided in two parts: further improvements to the proposed algorithm
and future features related to the clone detection component.

7.1 Improvements to the Proposed Algorithm

The algorithm developed and implemented is a prototype for fuzzy token matching in
Isabelle. The following points can be further improved:

Fine-tuning of the parameters
Throughout the span of this thesis, a short qualitative experiment was conducted and
the following parameters were used:

• Minimum code block weight = 40

• Fuzzy-token similarity threshold δ = 0.85

• Fuzzy-Jaccard similarity threshold ∆ = 0.8

Further tests and experiments can be conducted to evaluate which values for these
parameters can lead to the most reliable and consistent results. Additionally, the
precision of the results provided by the fuzzy-Jaccard similarity can be compared with
other similar metrics such as the fuzzy-Dice and fuzzy-Cosine similarity.

Improvement of the token comparison scheme
The token comparator relies on textual differences between the different tokens as well
as a few specific hard-coded cases. A further variety of cases can be added to include
more similar commands and keywords. Additionally, the selected hard-coded cases
need to be adapted to accommodate the selected parameters, specifically the token
similarity threshold δ. Furthermore, the current inner-syntax comparison scheme is a
placeholder method. An appropriate comparison scheme for these specific tokens can
be implemented to reliably compare them.

Further optimization of the algorithm
The different filtering steps lead to significant improvements to the speed of the

26

7 Future Work

algorithm. However, it can be further improved through the use of parallel computing.
Additionally, the proposed signature scheme in this thesis is a proof of concept. The
different signature values can be modified or expanded. This means that more signature
values can be added to the current possible ones to represent further possible keywords
or commands and lead to a lower number of candidates. Furthermore, two different
signature intersection thresholds θ were proposed. Their efficiency can be compared or
further threshold values can be proposed. In the presented implementation, we iterate
through every combination of code blocks and compare their signatures. This step can
be compared with the use of a lookup table.

7.2 Outlook and Further Features

In this section, we introduce a few ideas for the future of clone detection in Isabelle,
once the algorithm is refined.

Integration into CI pipelines
Despite the improvements and optimizations, the clone detection algorithm still takes
12 minutes for the session HOL. However, it is unnecessary to run the search on the
whole session every time. In other words, using a CI pipeline, older clones can be saved
and we only run the clone detection algorithm for code blocks that get modified or
added. In that case, the number of comparisons is considerably lower: we only need to
perform up to n comparisons instead of n·(n−1)

2 .

Handling of clones
Once clones are identified, they need to be handled accordingly. For example, if two
code blocks have a similarity of 1, only one version of that code block should remain in
the session. However, handling code blocks that have a similarity close to 1 is more
complex. A possible approach would be notifying the user and letting them decide
whether to delete one of the blocks or not.

27

List of Figures

2.1 Example base pseudo-code . 3
2.2 Example code clones of the four main types 3

4.1 Overview of the Fuzzy Token Matching using the Filtering Steps 11
4.2 Flowchart for the Token Comparison Scheme 13
4.3 Flowchart Summarizing the Optimized Fuzzy Token Matching Algorithm 19

5.1 Example of two code blocks in IFOL.thy with a similarity value of 1.0 . 21
5.2 Example of two code blocks in FOL.thy with a similarity value of 0.96 . 21
5.3 Example of two code blocks in IFOL.thy with a similarity value of 0.55 22
5.4 Bar graph of the running times of the 3 versions of the algorithm with

corresponding optimizations for multiple sessions 24

28

List of Tables

4.1 Examples of Signatures for Different Tokens 16

5.1 Number of possible candidates in each step using the signature threshold
variant 1 for different sessions . 23

5.2 Number of possible candidates in each step using the signature threshold
variant 2 for different sessions . 23

29

Bibliography

[Ain+19] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and B. Maqbool. “A System-
atic Review on Code Clone Detection.” In: IEEE Access 7 (2019), pp. 86121–
86144. issn: 21693536. doi: 10.1109/ACCESS.2019.2918202.

[Ber81] D. P. Bertsekas. “A new algorithm for the assignment problem.” In: Mathe-
matical Programming 21 (1981), pp. 152–171.

[GF13] W. H. Gomaa and A. A. Fahmy. “A survey of text similarity approaches.”
In: International Journal of Computer Applications 68 (2013).

[Ham22] M. Hamacher. “Development and Integration of a Clone Detection Tool for
Isabelle/Isar.” In: (2022).

[HK22] F. Huch and A. Krauss. FindFacts: A Scalable Theorem Search. 2022. arXiv:
2204.14191 [cs.LO].

[KL09] C. Kustanto and I. Liem. “Automatic source code plagiarism detection.” In:
10th ACIS Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing, SNPD 2009, In conjunction with IWEA
2009 and WEACR 2009 (2009), pp. 481–486. doi: 10.1109/SNPD.2009.62.

[Qin+11] J. Qin, W. Wang, Y. Lu, C. Xiao, and X. Lin. “Efficient exact edit similarity
query processing with the asymmetric signature scheme.” In: Proceedings
of the ACM SIGMOD International Conference on Management of Data (2011),
pp. 1033–1044. issn: 07308078. doi: 10.1145/1989323.1989431.

[RBS13] D. Rattan, R. Bhatia, and M. Singh. “Software clone detection: A systematic
review.” In: Information and Software Technology 55.7 (2013), pp. 1165–1199.
issn: 0950-5849. doi: https://doi.org/10.1016/j.infsof.2013.01.008.

[RC07] C. K. Roy and J. R. Cordy. “A Survey on Software Clone Detection Research
*.” In: (2007).

[Ste23] A. Steinhauer. “Clone Detection on Isabelle Terms based on Abstract Syntax
Trees.” In: (2023).

[Wen22a] M. Wenzel. “The Isabelle System Manual.” In: (2022).

[Wen22b] M. Wenzel. “The Isabelle/Isar Reference Manual.” In: (2022).

30

https://doi.org/10.1109/ACCESS.2019.2918202
https://arxiv.org/abs/2204.14191
https://doi.org/10.1109/SNPD.2009.62
https://doi.org/10.1145/1989323.1989431
https://doi.org/https://doi.org/10.1016/j.infsof.2013.01.008

Bibliography

[Wis93] M. J. Wise. “Running Karp-Rabin Matching and Greedy String Tiling
Neweyes: A System for Comparing Biological Sequences Using the Run-
ning Karp-Rabin Greedy String-Tiling Algorithm 1 Neweyes: A System for
Comparing Biological Sequences Using the Running Karp-Rabin Greedy
String-Tiling Algorithm.” In: (1993).

[WLF11] J. Wang, G. Li, and J. Fe. “Fast-join: An efficient method for fuzzy to-
ken matching based string similarity join.” In: Proceedings - International
Conference on Data Engineering (2011), pp. 458–469. issn: 10844627. doi:
10.1109/ICDE.2011.5767865.

bibliography

31

https://doi.org/10.1109/ICDE.2011.5767865

	Acknowledgments
	Abstract
	Contents
	Introduction
	Theoretical Background
	Code Clones
	String Similarity Approaches
	Character-Based Approach
	Token-Based Approach
	Hybrid-Based Approach

	Fuzzy Token Matching
	Signatures in Fuzzy Token Matching
	Isabelle Code Structure

	Related Work
	Clone Detection Schemes for Isabelle Code
	Token-Based Clone Detection Using Suffix Trees in Isabelle
	Clone Detection on Isabelle Terms based on Abstract Syntax Trees

	String Matching Approaches
	Running Karp-Rabin Greedy String-Tiling Algorithm
	Fast-join: An efficient method for fuzzy token matching based string similarity join

	Fuzzy Token Matching in Isabelle
	Token Markup
	Token Comparison Scheme
	Token Matching
	Optimizations
	Signature Schemes
	Weight Condition
	Relaxed Matching

	Summary

	Result Evaluation
	Analysis of Sample Results
	Analysis of the Filtering Steps
	Analysis of the pruned possibilities
	Influence on the speed of the clone detection

	Conclusion
	Future Work
	Improvements to the Proposed Algorithm
	Outlook and Further Features

	List of Figures
	List of Tables
	Bibliography

