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Abstract

Query optimization is an important research area of database systems. This thesis
formalizes some aspects of query optimization in the interactive theorem prover Is-
abelle/HOL. It includes a general framework consisting of the definitions of selectivities,
query graphs, join trees, and cost functions. Furthermore, we implement the join or-
dering algorithm IKKBZ using these definitions. We use Isabelle/HOL to verify the
correctness of these definitions and prove that IKKBZ produces an optimal solution
within a restricted solution space.
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Kurzfassung

Anfrageoptimierung ist ein wichtiges Forschungsgebiet im Bereich von Datenbanksyste-
men. Diese Arbeit formalisiert einige Aspekte der Anfrageoptimierung im interaktiven
Theorembeweiser Isabelle/HOL. Es beinhaltet ein allgemeines Framework, das aus
Definitionen von Selektivitäten, Query-Graphen, Join-Bäumen, und Kostenfunktionen
besteht. Außerdem haben wir den Join-Optimierungsalgorithmus IKKBZ mit Hilfe
dieser Definitionen implementiert. Wir benutzen Isabelle/HOL um die Korrektheit
dieser Definitionen zu verifizieren und zu beweisen, dass IKKBZ eine optimale Lösung
innerhalb eines eingeschränkten Lösungsraums findet.
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1 Introduction

Data in relational databases is often requested using query languages like SQL. These
provide a high-level "declarative" interface to access the stored data without specifying
a concrete execution of such a query [2, p. 34]. Therefore, an important problem of
relational databases is query optimization. A major part of this research area is to find an
optimal join order for a query. A join order refers to the order in which the relations of
a query are combined to produce the desired result. Since different join orders can have
different execution times while calculating the same query, this can have a significant
impact on the performance. A join order is optimal if it has a minimal cost with respect
to some cost function that measures the execution cost [8].

However, since the problem of finding an optimal join order is NP-complete in
general, computing the optimal solution may not be feasible. Instead, there are heuristic
algorithms (e.g. GOO) that generate results without any guarantees to their optimality.
Other algorithms (e.g. IKKBZ) generate an optimal solution within a restricted solution
space [3, 5, 7].

Since this topic has already been researched for several decades, a large variety of
different algorithms has been developed. While their properties are usually proven,
verifying these proofs can be a lot of work and making small errors is possible. Therefore,
it is useful to use an interactive theorem prover like Isabelle1 which machine-checks
every step of a proof [13].

While the "Archive of Formal Proofs"2 (AFP) already covers a wide range of different
formalizations, query optimization is not one of them. Hence, the goal of this thesis is to
implement the IKKBZ algorithm and a framework of basic query optimization theories
that are necessary for this implementation.

Outline

The next chapter provides an overview of some related work and a short introduction to
the notation of Isabelle/HOL.

In the Chapters 3 to 5 we define several general data structures which we need for
query optimization. Chapter 3 covers selectivities and some related properties. In the
following chapter, we develop definitions for query graphs and join trees. Based on
these, we discuss cost functions in Chapter 5.

1https://isabelle.in.tum.de/
2https://www.isa-afp.org/
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1 Introduction

Chapter 6 provides some extensions to directed trees which we need to formalize
IKKBZ. In Chapter 7, we define the IKKBZ algorithm, prove its optimality, and apply it
to some example cost functions.

The last chapter summarizes the results of this thesis and gives a short overview of
possible future extensions.

To keep this thesis short, we omit the concrete proofs in all of these chapters. Instead,
we provide some key lemmas and an outline for the more interesting proofs. However,
all definitions and their complete proofs can be found in their respective theory file3.
We annotate the chapters with their corresponding theory files to the right of their
title to make it easier to find these proofs. Furthermore, all definitions are focused on
simplicity to make the proofs easier. However, they can be replaced by more efficient
implementations by showing their equivalence.

3https://gitlab.lrz.de/00000000014969F0/query-optimization
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2 Preliminiaries

In this chapter, we discuss some related work and explain the basic notation of Is-
abelle/HOL.

2.1 Related Work

Most of my knowledge about query optimization is taught in TUM’s “Query Optimiza-
tion” lecture [9] which was held by Neumann and Radke when I attended it. Especially
the slides of chapter three [10] provide a good overview of join ordering techniques.

The paper “Building Query Compilers” [8] by Moerkotte also covers a variety of
different topics related to query optimization.

“On the Optimal Nesting Order for Computing N-Relational Joins” [5] by Ibaraki
and Kameda is one of the original papers that explain the IKKBZ algorithm. The other
fundamental paper is “Optimization of Nonrecursive Queries” [7] by Krishnamurthy,
Boral, and Zaniolo. The IKKBZ is named after the five authors of these two papers since
they both led to this algorithm.

Of course, an important part of this thesis is Isabelle and its higher-order logic (HOL)
library which was developed and extended by many different people [13].

The AFP’s “Graph Theory” [12] entry by Noschinski extends the HOL library by basic
graph-theoretic formalizations which we use for the graph-related definitions in this
thesis.

The “Fast Diameter Estimation” [14] project developed by Stevens and Abdulaziz
supplements this theory with further additions. This includes the definition of directed
trees which we use for the IKKBZ algorithm.

2.2 Isabelle/HOL

Isabelle/HOL can be seen as a functional programming language that supports proofs
about defined functions. It consists of a type system of base types, variables, functions,
and type constructors. Definitions and proofs are stated using terms that are assigned
such a type [11, p. 3].

New data types are defined by the datatype keyword. This may depend on type
variables and requires one or multiple constructors for this new type. An example of
such a datatype is the definition of a list which we will often use throughout this thesis.
It uses the type variable ’a and consists of two constructors [11, p. 8].

datatype 'a list = Nil | Cons 'a "'a list"

3



2 Preliminiaries

Furthermore, it introduces some additional operations that we omitted to keep this
example simple. However, we will mostly use the syntactic sugar like "[]" for Nil and "#"
for Cons when referring to lists [11].

Moreover, it is possible to use the type_synonym keyword to define aliases for a type.
This can be used as an abbreviation or to give a more meaningful name to a type [11, p.
14].

To define functions, we will often use the fun keyword that allows recursive definitions
and pattern matching for its input parameters. One restriction is that the termination of
a function needs to be proven. However, for most functions, this is done automatically.
For more complex preconditions or termination proofs, we use the function keyword
which is quite similar to fun. For non-recursive definitions, there are the additional
keywords abbreviation and definition. While there are some differences between these
keywords, they are not important to understand this thesis [6, 11].

Proofs in Isabelle/HOL begin by stating the goal in a lemma, theorem, or corollary.
We use the different names to indicate the importance of a proven statement, but there
is no real difference between them. Often the goal is not some general statement
but only holds if certain assumptions are satisfied. Therefore, Isabelle/HOL uses the
"=⇒" symbol to separate goals and assumptions. Multiple assumptions can be chained
together by these arrows. Furthermore, the symbols "[[" and "]]" can be used to group
assumptions and make the separation clearer. Moreover, the explicit keywords assumes
and show can be used to make the distinction even more obvious. Another related
keyword is fixes which allows to explicitly fix a free variable outside of the goal and
assumptions. Furthermore, defines can be used to introduce a local abbreviation in the
context of this proof [11].

While there are some small differences between the different ways of stating assump-
tions, these are again not relevant to understanding this thesis. Therefore, these three
statements can be seen as equivalent [11]:

lemma sum_pos: "(n::int) > 0 =⇒ m ≥ 0 =⇒ n + m > 0"

theorem sum_pos: "[[(n::int) > 0; m ≥ 0]] =⇒ n + m > 0"

corollary sum_pos:

fixes n :: int and m

defines "res ≡ n + m"

assumes "n > 0" and "m ≥ 0"

shows "res > 0"

Hence, it would be possible to commit to a single notation throughout this thesis.
However, we still use these different notations to make definitions and proofs easily
recognizable in their respective theory file. Since we omit the detailed proofs in this
thesis, we also omit the explanations of how these work in Isabelle/HOL.

To deal with parametric theories, Isabelle uses locales. A locale consists of fixed
parameters and assumptions that can be used within all definitions and proofs in its
context. Furthermore, it is possible to have a locale built on other locales by combining
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2.2 Isabelle/HOL

them with a "+" symbol. The theorems defined in a locale’s context can later be used by
proving the assumptions and using the interpretation keyword [1].

An example locale is the definition of directed trees in the “Fast Diameter Estimation”
project [14]. It extends the locale wf_digraph by fixing a root that is in the vertices. The
wf_digraph locale expresses directed graphs as sets of verts and arcs. Furthermore, it uses
a head and a tail function to express which vertices are connected by the arcs. These
functions must be well-formed in the sense that there may only be arcs between vertices
that are contained in the verts set. Moreover, all vertices in a directed tree must be
reachable via a unique awalk from the root. The awalk property is satisfied if the list of
edges p represents a valid arc walk from the first to the last parameter. Note that we use
the terms arcs and edges interchangeably throughout this thesis.

locale directed_tree = wf_digraph T for T +

fixes root :: 'a

assumes root_in_T: "root ∈ verts T"

and unique_awalk: "v ∈ verts T =⇒ ∃!p. awalk root p v"

5





3 Selectivities
Selectivities.thy

Usually, the information available to a query optimizer is limited to base relations.
Hence, we need a way to calculate the cardinalities of intermediate join results. For
this purpose, we introduce selectivities. As an example, consider two relations R1 and
R2 with the cardinalities 10 and 20. If we know that a join predicate p1,2 of these two
relations has a selectivity of 0.2, we can use this information to calculate the result’s
cardinality. It is computed by multiplying the base cardinalities and the selectivity value
[8, p. 34]:

|R1 ⋊⋉p1,2 R2| = 10 · 20 · 0, 2 = 40

Formally, a selectivity fi,j assigns a real value in the range [0, 1] to a join predicate
pi,j. It can be combined with the cardinalities of the base relations to calculate the
cardinality of a join result. Selectivities are defined as the result cardinality divided by
the cardinality of the Cartesian product [5, p. 484][8, p. 34]:

fi,j =
|Ri ⋊⋉pi,j Rj|
|Ri| × |Rj|

If there is no join predicate between two relations, joining them results in a cross
product of the input relations. This means that all possible combinations are computed
and none are discarded. Therefore, it can be seen as a join with a selectivity of one.
Hence, it is possible to assign a selectivity to all pairs of relations and we represent them
by a function that maps two relations of an arbitrary type to a real value [8, p. 34]:

type_synonym 'a selectivity = "'a ⇒ 'a ⇒ real"

One important property of selectivities is that selectivities should be symmetric since
Ri ⋊⋉ Rj = Rj ⋊⋉ Rj holds for inner joins [8, p. 34]:

definition sel_symm :: "'a selectivity ⇒ bool" where

"sel_symm sel = (∀x y. sel x y = sel y x)"

The second definition requires that all selectivities are in the range (0, 1]. We exclude
zero because it is required for some proofs. For example, the proof that a certain cost
function satisfies the ASI property which we explain in Chapters 5.2 and 7.3 relies on
positive cardinalities. Therefore, the selectivities between all relations must be positive
as well [7, p. 132]. Furthermore, since a selectivity of zero would mean that the result is
empty, computing a join order for these cases does not make sense anyway. Moreover,
selectivities in real applications are only estimated, since correctly calculating them
according to the previous definition would already require the output cardinality. Hence,

7



3 Selectivities

an estimated selectivity of zero can be replaced by a small positive value. Therefore, we
do not lose any relevant cases by excluding zero [8, p. 34].

definition sel_reasonable :: "'a selectivity ⇒ bool" where

"sel_reasonable sel = (∀x y. sel x y ≤ 1 ∧ sel x y > 0)"

For queries with more than two relations, it is necessary to compute the selectivity of
joining compound relations that consist of already joined relations. Hence, we define
set_sel_aux which computes the selectivity of joining a set of relations with a single
relation and set_sel which computes the selectivities of joining two sets of relations.
We also define an equivalent definition set_sel’ which changes the order of recursion.
However, since the definitions are quite similar we only include one of them here:

definition set_sel_aux :: "'a selectivity ⇒ 'a ⇒ 'a set ⇒ real" where

"set_sel_aux sel x Y = (∏y ∈ Y. sel x y)"

definition set_sel :: "'a selectivity ⇒ 'a set ⇒ 'a set ⇒ real" where

"set_sel sel X Y = (∏x ∈ X. set_sel_aux sel x Y)"

Since every relation that appears within a query should be joined exactly once, it
is possible to define an equivalent definition based on distinct lists. This simplifies
some proofs and has additional applications for IKKBZ since we only consider left-deep
trees which are uniquely identified by a list of relations as we show in Chapter 4.2.4.
Similar to the set-based selectivity calculation functions, we define two different sets of
functions. However, this time we show the definitions for the other order of recursion:

fun list_sel_aux' :: "'a selectivity ⇒ 'a list ⇒ 'a ⇒ real" where

"list_sel_aux' sel [] y = 1"

| "list_sel_aux' sel (x#xs) y = sel x y * list_sel_aux' sel xs y"

fun list_sel':: "'a selectivity ⇒ 'a list ⇒ 'a list ⇒ real" where

"list_sel' sel x [] = 1"

| "list_sel' sel x (y#ys) = list_sel_aux' sel x y * list_sel' sel x ys"

While it would be possible to use some folding function to define these functions,
we prefer these recursive definitions for their simplicity. Furthermore, by proving the
equivalence to a possible folding-based definition we can use all the related proofs about
these as well.

It follows by some simple inductions that the list- and set-based functions are equiva-
lent if the inputs are distinct lists and their respective set representation. Furthermore,
some important characteristics of these functions are that they preserve the symmetry
and reasonability properties of their input selectivity:

lemma list_sel_reasonable:

"sel_reasonable f =⇒ list_sel f x y ≤ 1 ∧ list_sel f x y > 0"

lemma list_sel_symm: "sel_symm f =⇒ list_sel f x y = list_sel f y x"

8



4 Query Graphs and Join Trees
QueryGraph.thy, JoinTree.thy

In this chapter, we cover query graphs which present a convenient representation of a
query [8, p. 32]. Furthermore, we define join trees as a way of expressing different join
orders [8, p. 33]. Throughout this chapter, we use the database schema shown in Table 1
to illustrate the definitions with some examples. It contains information about students
and which lectures they attend. On this schema, we define the example query shown in
Figure 1. The query finds all students that attend the same lecture as a student called
"Fichte".

attend
StudNr LectureNr
26120 5001
27550 5001
27550 4052
28106 5041
28106 5052
28106 5216
28106 5259
29120 5001
29120 5041
29120 5049
25403 5022
29555 5022
29555 5001

students
StudNr Name Semester
24002 Xenokrates 18
25403 Jonas 12
26120 Fichte 10
26830 Aristoxenos 8
27550 Schopenhauer 6
28106 Carnap 3
29120 Theophrastos 2
29555 Feuerbach 2

Table 1: Example relations based on the uni schema [4]

SELECT s2.*

FROM students s1, attend a1, attend a2, students s2

WHERE s1.Name = 'Fichte'

AND s1.StudNr = a1.StudNr

AND a1.LectureNr = a2.LectureNr

AND a2.StudNr = s2.StudNr;

Figure 1: Example SQL query on the schema from Table 1

9



4 Query Graphs and Join Trees

4.1 Query Graphs

A query graph is an undirected graph where the nodes are the relations of a query and
the edges are join predicates [8, p. 32]. Figure 2 shows the query graph for the example
query shown in Figure 1. In this query graph, we can see that every relation in the
FROM clause has its own node labeled with its name, identifier, and cardinality. For
example, the lower right node represents the students relation with identifier s2 and a
cardinality of eight. Furthermore, all predicates are represented as edges annotated with
their corresponding predicate and an approximated selectivity.

students s1
|s1| = 8

|a1| = 13
attend a1

|a2| = 13
attend a2

students s2
|s2| = 8

σs1.StudNr=a1.StudNr = 0.125

σa1.LectureNr=a2.LectureNr = 0.172

σa2.StudNr=s2.StudNr = 0.125

σs1.Name=′Fichte′ = 0.125

Figure 2: Query graph of the example query from Figure 1

However, we do not need all of that information for the problem of finding a join
order: It is sufficient to label the nodes with their identifier and cardinality. Similarly, the
only information we need about the edges is their selectivity. Furthermore, selections
(i.e. self-edges) can be pushed down and processed before join ordering. Hence, it is
sufficient to consider a simplified query graph as shown in Figure 3 [8].

|s1| = 1

|a1| = 13 |a2| = 13

|s2| = 8

0.125

0.172

0.125

Figure 3: Simplified query graph

In our implementation, we use the AFP’s graph theory [12] as a basis for query graphs.
Additionally, we fix a weight function that annotates the edges with their selectivity and
a cardinality function that assigns each relation to its cardinality. This way we have all
the information necessary for join ordering stored in the query graphs. For relations, we
use the arbitrary type ’a to keep the definition general. A possible instantiation would
be a string since identifiers in queries are represented by strings. However, it is often the
case that integers are used instead for performance reasons.

10



4.1 Query Graphs

locale query_graph = graph +

fixes sel :: "'b weight_fun"

fixes cf :: "'a ⇒ real"

assumes sel_sym:

"[[tail G e1 = head G e2; head G e1 = tail G e2]] =⇒ sel e1 = sel e2"

and not_arc_sel_1: "e /∈ arcs G =⇒ sel e = 1"

and sel_pos: "sel e > 0"

and sel_leq_1: "sel e ≤ 1"

and pos_cards: "x ∈ verts G =⇒ cf x > 0"

The sel_sym condition is necessary to ensure the symmetry of the selectivities since
undirected graphs are represented as bidirected graphs in the underlying graph theory.
The second condition not_arc_sel_1 requires that non-existing arcs have a selectivity
of one since that means that they are interpreted as a cross product. The last three
conditions ensure that the selectivities and cardinalities have reasonable values as
discussed in Chapters 3 and 4.2.2.

Since the selectivity depends on the edges which makes it a bit impractical, we define
a function to determine an equivalent selectivity using the type introduced in Chapter 3.
We define it by using the THE operator to apply sel on the unique edge between two
relations. If no such edge exists, we know that there is no predicate between the nodes.
Hence, the result must be a cross product with a selectivity of one.

definition match_sel :: "'a selectivity" where

"match_sel x y =

(if ∃e ∈ arcs G. (tail G e) = x ∧ (head G e) = y

then sel (THE e. e ∈ arcs G ∧ (tail G e) = x ∧ (head G e) = y)

else 1)"

We transfer the locale assumptions by introducing the notion of a matching_sel. A
selectivity f matches the sel function if they produce the same result for all pairs of arcs
and the connected nodes. Furthermore, all pairs without arcs need to have a selectivity
of one.

definition matching_sel :: "'a selectivity ⇒ bool" where

"matching_sel f = (∀x y.

(∃e. (tail G e) = x ∧ (head G e) = y ∧ f x y = sel e)

∨ ((∄e. (tail G e) = x ∧ (head G e) = y) ∧ f x y = 1))"

With this definition, we can show that any function that satisfies this property fulfills
the basic symmetry and reasonability constraints. Furthermore, since all matching
selectivities need to agree on all inputs, it follows that all of them must be equal. Finally,
we apply the results to match_sel by showing that it satisfies the matching_sel property.

corollary match_sel_symm: "sel_symm match_sel"

corollary match_sel_reasonable: "sel_reasonable match_sel"

11



4 Query Graphs and Join Trees

4.2 Join Trees

Join trees are binary trees in which the leaves are relations and inner nodes are joins or
cross products. They represent possible join orderings by following them bottom-up.
Figure 4 shows some example join trees for the usual query. While the first one is free of
cross products, the second one does have a cross product since there is no join predicate
between s1 and s2 [8, p. 33].

⋊⋉

⋊⋉

s1 a1

⋊⋉

s2 a2

(a) Join tree without cross products

⋊⋉

⋊⋉

a2 a1

×

s1 s2

(b) Join tree with a cross product

Figure 4: Example join trees for the query from Figure 1

We define join trees as a new datatype that only represents the structure while
cardinalities and selectivities are handled separately for more flexibility. This allows us
to use the cost and selectivity functions we defined for query graphs.

datatype (relations:'a) joinTree

= Relation 'a | Join "'a joinTree" "'a joinTree"

type_synonym 'a card = "'a ⇒ real"

4.2.1 Functions for Information Retrieval

One function that is included in the datatype definition is the relations function. It is
of type ’a joinTree⇒ ’a set and returns the set of all relations in a join tree. While the
inorder function provides a list of relations created by an inorder traversal of a join tree,
revorder returns the reverse of that list. The last operation that includes all relations in a
join tree is the relations_mset function which returns a multiset containing every relation
as often as it appears in its input join tree.

fun inorder :: "'a joinTree ⇒ 'a list" where

"inorder (Relation rel) = [rel]"

| "inorder (Join l r) = inorder l @ inorder r"

fun relations_mset :: "'a joinTree ⇒ 'a multiset" where

"relations_mset (Relation rel) = {#rel#}"

| "relations_mset (Join l r) = relations_mset l + relations_mset r"

Even though it is possible to define some of these collections based on others,
these direct definitions are sometimes simpler to use. Therefore, we define them

12



4.2 Join Trees

by the above recursive functions and show the equivalences by additional lemmas like
revorder_eq_rev_inorder:

lemma revorder_eq_rev_inorder: "revorder t = rev (inorder t)"

We use the card function to calculate the cardinality of the result of joining all relations
as given by a join tree. As input it requires a cardinality function of type ’a card which
maps all relations to their cardinality. Furthermore, it takes a ’a selectivity as defined in
Chapter 3 and a ’a joinTree to calculate its cardinality according to this formula [8, p. 35]:

|T1 ⋊⋉ T2| =

 ∏
Ri∈T1,Rj∈T2

fi,j

 |T1||T2|

Figure 5 shows an example calculation of the cardinalities for the join tree that is
shown in Figure 4b. It repeats the join tree on the left and shows the cardinalities on
the right. The calculations according to the above formula are also included in the right
tree. The cardinalities of the base relations and the selectivities are taken from the query
graph shown in Figure 3.

⋊⋉

⋊⋉

a2 a1

×

s1 s2

(0.125 · 0.125) · 29.068 · 8 ≈ 3.634

(0.172) · 13 · 13 = 29.068

13 13

(1) · 1 · 8 = 8

1 8

Figure 5: Example cardinality calculation for the join tree shown on the left

Since it requires the cardinalities of both join inputs to calculate the resulting cardinal-
ity, we use a recursive definition. Furthermore, we use list_sel to calculate the product of
selectivities that is displayed in parentheses in the previous calculations.

fun card :: "'a card ⇒ 'a selectivity ⇒ 'a joinTree ⇒ real" where

"card cf f (Relation rel) = cf rel"

| "card cf f (Join l r) =

list_sel f (inorder l) (inorder r) * card cf f l * card cf f r"

Since it is sometimes useful to know the height or number of relations in a join tree,
we define the two functions height and num_relations to calculate these values. Finally,
the first_node function returns the left-most node in a join tree. This node is the first
node that is joined in left-deep trees which is why it is useful to be able to extract it
from a join tree.

fun first_node :: "'a joinTree ⇒ 'a" where

"first_node (Relation r) = r"

| "first_node (Join l _) = first_node l"

lemma first_node_eq_hd: "first_node t = hd (inorder t)"
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4 Query Graphs and Join Trees

4.2.2 Functions for Correctness Checks

The definitions in this section are used to check if a join tree satisfies certain properties.
The reasonable_cards function checks whether all cardinalities are positive. Additionally,
it requires all calculated cardinalities to be less or equal to the cardinality of the cross
product. While it is clear that cardinalities should be non-negative numbers, the value
zero is excluded for simplicity and because it would produce an empty result similar to
a selectivity of zero. The second condition follows from the reasonability for subtrees
combined with a valid selectivity which is less or equal to one for all pairs of relations.

fun reasonable_cards :: "'a card ⇒ 'a selectivity ⇒ 'a joinTree ⇒ bool"

where

"reasonable_cards cf f (Relation rel) = (cf rel > 0)"

| "reasonable_cards cf f (Join l r) = (let c = card cf f (Join l r) in

c ≤ card cf f l * card cf f r ∧ c > 0

∧ reasonable_cards cf f l ∧ reasonable_cards cf f r)"

Another correctness property is that every relation should have a unique identifier that
only appears once in a join tree. We define it using the inorder function but equivalent
definitions based on revorder and mset are included as lemmas.

definition distinct_relations :: "'a joinTree ⇒ bool" where

"distinct_relations t = distinct (inorder t)"

4.2.3 Structures of Join Trees

Join trees can have certain structures that are necessary for some join ordering algorithms.
For example, the IKKBZ algorithm only considers left-deep trees in its solution space.
Left-deep trees require that every inner node has a leaf as its right child while right-deep
trees need the left child to be a leaf. Zig-zag trees are slightly less restrictive since the
leaf nodes may be on either side of an inner node [8, p. 33].

Figure 6 shows examples of such join trees. All of them are zig-zag trees, but only the
tree in Figure 6a is left-deep. Similarly, only the last join tree is right-deep.

⋊⋉

⋊⋉

⋊⋉

s1 a1

a2

s2

(a) Left-deep join tree

⋊⋉

⋊⋉

s2 ⋊⋉

a1 a2

s1

(b) Zig-zag join tree

⋊⋉

s2 ⋊⋉

a2 ⋊⋉

s1 a1

(c) Right-deep join tree

Figure 6: Example join trees for the query from Figure 1
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4.3 Combined Properties of Join Trees and Query Graphs

While there exists another structure called "bushy", this is a property satisfied by all
join trees. Therefore, a definition of bushy trees is superfluous. The following is the
definition of left-deep join trees but all other functions are defined analogously.

fun left_deep :: "'a joinTree ⇒ bool" where

"left_deep (Relation _) = True"

| "left_deep (Join l (Relation _)) = left_deep l"

| "left_deep _ = False"

4.2.4 Creating Join Trees from Lists

The functions in this section are used to create join trees from lists. The first function
create_rdeep creates a right-deep join tree by recursion on the list of input relations.
Similarly, create_ldeep constructs a left-deep tree from a given list of relations. However,
since join trees can not be empty, they are both undefined for empty lists. Moreover, the
create_ldeep definition uses an auxiliary function that works on reversed lists to create a
tree with correct inorder traversal.

fun create_rdeep :: "'a list ⇒ 'a joinTree" where

"create_rdeep [] = undefined"

| "create_rdeep [x] = Relation x"

| "create_rdeep (x#xs) = Join (Relation x) (create_rdeep xs)"

fun create_ldeep_rev :: "'a list ⇒ 'a joinTree" where

"create_ldeep_rev [] = undefined"

| "create_ldeep_rev [x] = Relation x"

| "create_ldeep_rev (x#xs) = Join (create_ldeep_rev xs) (Relation x)"

definition create_ldeep :: "'a list ⇒ 'a joinTree" where

"create_ldeep xs = create_ldeep_rev (rev xs)"

With these definitions, we can show that left-deep trees are uniquely represented by
sequences of relations. To do so, we show that the inorder and create_ldeep functions are
inverse operations. The only exception is that we need to exclude empty lists since join
trees can not be empty. Of course, the same holds for right-deep trees as well.

lemma create_ldeep_order: "xs ̸= [] =⇒ inorder (create_ldeep xs) = xs"

lemma create_ldeep_inorder:

"left_deep t =⇒ create_ldeep (inorder t) = t"

4.3 Combined Properties of Join Trees and Query Graphs

Finally, we show the relationship between query graphs and join trees by adding some
definitions in the context of a query graph. First, we define the notion of matching_rels
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which determines whether all relations in a join tree are contained in the query graph or
not. This allows us to reason over such join trees with inductive proofs that would not
be possible if equivalence was required.

definition matching_rels :: "'a joinTree ⇒ bool" where

"matching_rels t = (relations t ⊆ verts G)"

With this definition, we can show that a join tree has reasonable cardinalities when
using the fixed cardinality function and the matching selectivity.

corollary match_reasonable_cards:

"matching_rels t =⇒ reasonable_cards cf match_sel t"

Moreover, we define valid_tree to determine if a join tree computes the query rep-
resented by a query graph. This means that every relation of the query graph has to
appear exactly once in the join tree. Note that this does not forbid duplicate relations
like students but only duplicates of concrete instances like students s1 and students s2.

definition valid_tree :: "'a joinTree ⇒ bool" where

"valid_tree t = (relations t = verts G ∧ distinct_relations t)"

Finally, we define a function to decide if a join tree is free of cross products. This is
useful because some algorithms only consider join trees without cross products. For
example, IKKBZ guarantees to find an optimal solution within left-deep join trees
without cross products as we prove in Chapter 7.

Since a cross product occurs when joining two relations without a join predicate and
these are represented by edges in the query graph, a cross product occurs when there
is no edge between the relations of two joined subtrees. Therefore, a join tree without
cross products always has to contain an edge from the left to the right subtree since
query graphs are undirected.

fun no_cross_products :: "'a joinTree ⇒ bool" where

"no_cross_products (Relation rel) = True"

| "no_cross_products (Join l r) =

((∃x ∈ relations l. ∃y ∈ relations r. x →G y)

∧ no_cross_products l ∧ no_cross_products r)"

A consequence of this property is that all relations in a join tree are reachable in the
query graph by only visiting relations that are contained in the join tree. However,
we need the additional condition matching_rels to ensure that it holds for join trees
consisting of a single relation as well.

lemma no_cross_awalk:

"[[matching_rels t; no_cross_products t;

x ∈ relations t; y ∈ relations t]]

=⇒ ∃p. awalk x p y ∧ set (awalk_verts x p) ⊆ relations t"
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5 Cost Functions
CostFunctions.thy

Cost functions associate join trees with a real value that indicates the cost of executing a
query in the given join order. This chapter explains some exemplary cost functions and
proofs of certain relevant properties.

5.1 Basic Cost Functions

The first cost function is the Cout function which sums up all output cardinalities of the
joins in a join tree. It is defined by the following recursive equation [8, p. 35]:

Cout(T) =

{
0 if T is a single relation

|T|+ Cout(T1) + Cout(T2) if T = T1 ⋊⋉ T2

The definition in Isabelle/HOL is directly derived from this equation and uses the
card function described in Section 4.2.1 to calculate the cardinality of a join:

fun c_out :: "'a card ⇒ 'a selectivity ⇒ 'a joinTree ⇒ real" where

"c_out _ _ (Relation _) = 0"

| "c_out cf f (Join l r) =

card cf f (Join l r) + c_out cf f l + c_out cf f r"

While the Cout function relates output cardinality to the execution cost, the remaining
definitions in this section are designed to capture the cost of specific implementations
of a join. However, they all have in common that the cost of a complete join tree is
determined by the sum of the costs of all joins occurring in it [8, p. 36].

As the name suggests, the Cnlj function estimates the cost of nested loop joins.
Therefore, the cost of a single join is defined by the product of the cardinalities of its
input [8, p. 36]:

Cnlj(e1 ⋊⋉p e2) = |e1||e2|

fun c_nlj :: "'a card ⇒ 'a selectivity ⇒ 'a joinTree ⇒ real" where

"c_nlj _ _ (Relation _) = 0"

| "c_nlj cf f (Join l r) =

card cf f l * card cf f r + c_nlj cf f l + c_nlj cf f r"

The third cost function aims to provide an estimation for hash joins. It assumes
a constant cost to find all matches of an element of the left input in the right input.
Therefore, it assumes that the right input is already stored in a hash table and is only
viable for left-deep trees. Otherwise, intermediate results would need to be precomputed
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which is not realistic. Furthermore, we assume that the average length of a collision
chain is 1.2 which leads to the following definitions [8, p. 36]:

Chj(e1 ⋊⋉p e2) = 1.2|e1|

fun c_hj :: "'a card ⇒ 'a selectivity ⇒ 'a joinTree ⇒ real" where

"c_hj _ _ (Relation _) = 0"

| "c_hj cf f (Join l r) = 1.2 * card cf f l + c_hj cf f l + c_hj cf f r"

Another possible join implementation is the use of a sort merge join which operates by
sorting both inputs and then performing a linear scan of both sorted inputs. Hence the
cost for large inputs is bounded by the cost of sorting which leads to these definitions
[8, p. 36]:

Csmj(e1 ⋊⋉p e2) = |e1|log(|e1|) + |e2|log(|e2|)

fun c_smj :: "'a card ⇒ 'a selectivity ⇒ 'a joinTree ⇒ real" where

"c_smj _ _ (Relation _) = 0"

| "c_smj cf f (Join l r) =

card cf f l * log 2 (card cf f l) + card cf f r * log 2 (card cf f r)

+ c_smj cf f l + c_smj cf f r"

5.2 Properties of Cost Functions

In this section, we discuss some additional properties of cost functions. The first property
is symmetry which is satisfied if a cost function returns the same result when the join
partners are swapped [8, p. 38]:

definition symmetric :: "('a joinTree ⇒ real) ⇒ bool" where

"symmetric f = (∀x y. f (Join x y) = f (Join y x))"

All of the example cost functions except for Chj fulfill this property. However, the Cout

function requires that the selectivity function is symmetric. Since this should be the case
for valid selectivities anyway, it is not a real restriction [8, p. 38].

lemma c_out_symm: "sel_symm f =⇒ symmetric (c_out cf f)"

lemma c_nlj_symm: "symmetric (c_nlj cf f)"

lemma c_smj_symm: "symmetric (c_smj cf f)"

The second property is the adjacent sequence interchange (ASI) property. Intuitively,
it means that the relationship of the cost of two sequences is completely represented by
another function that only depends on smaller subsequences. As the name suggests, the
representation only needs to hold if these subsequences are adjacent and exchanging
them transforms one complete sequence into the other one. This allows us to argue
about the optimality of a complete sequence by only using local information of smaller
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parts. Formally, the ASI property is satisfied by a function f if there exists a rank
function r f such that f (AS1S2B) ≤ f (AS2S1B) holds for any sequences A, B and any
nonempty sequences S1, S2 if and only if r f (S1) ≤ r f (S2) [5, p. 495].

The definition in Isabelle/HOL has some additional requirements that are necessary
to prove that a function satisfies the ASI property. However, valid sequences always
fulfill these conditions. Therefore, they do not restrict the applicability of the property.
The first additional requirement is that the sequence needs to be distinct which is already
required for a sequence to be valid. The second condition is that if the root r is contained
in the sequence, it needs to be the first relation. Since we choose the root as the first
element this is satisfied for valid sequences as well.

definition asi :: "('a list ⇒ real) ⇒ 'a ⇒ ('a list ⇒ real) ⇒ bool"

where

"asi rank r c = (∀A U V B. distinct (A@U@V@B) ∧ U ̸= [] ∧ V ̸= []

∧ (r /∈ set (A@U@V@B)

∨ (take 1 (A@U@V@B) = [r] ∧ take 1 (A@V@U@B) = [r]))

−→ (c (rev (A@U@V@B)) ≤ c (rev (A@V@U@B))

←→ rank (rev U) ≤ rank (rev V)))"

Since this property operates on list-based cost functions, we need list-based functions
that are equivalent for left-deep trees. In Chapter 7.3 we define such a general cost
function called c_list and prove that it satisfies this ASI property. Furthermore, we show
how to instantiate the parameters of this function such that we get equivalent list-based
definitions for the Cout, Cnlj, and Chj cost functions. Hence, these three example cost
functions satisfy the ASI property.
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6 Extensions of Directed Trees

The IKKBZ algorithm relies on a so-called precedence graph which is a query graph
interpreted as a directed tree by choosing one vertex as the root [8, p. 50][5, p. 494]. To
formulate the algorithm in Isabelle/HOL, we use the notion of a directed tree as defined
in the “Fast Diameter Estimation” project [14]. This chapter introduces some additions
to these directed trees that are used in Chapter 7 to define and prove some properties of
IKKBZ.

6.1 General Additions to Directed Trees Directed_Tree_Additions.thy

To formalize IKKBZ, we need additional definitions and lemmas for directed trees. First
of all, we define finite directed trees as a combination of the directed_tree and fin_digraph
locales. The second locale requires that the vertices and arcs are both finite sets.

locale finite_directed_tree = directed_tree + fin_digraph T

On the one hand, we need this constraint for the algebraic type dtree that we introduce
in Section 6.2. On the other hand, we do not lose any expressiveness concerning graphs
since they are always finite per definition in the AFP’s graph theory. Therefore, this
condition is satisfied by all query_graphs and is not a restriction.

To execute the IKKBZ algorithm, we need to transform a graph into a directed tree.
However, since defining such a transformation algorithm is outside the scope of this
thesis, we assume that such a conversion function exists. A possible implementation
could be breadth-first search (BFS). Hence, we create a bfs_tree locale which assumes
that a directed tree T is a subgraph of a graph G. Furthermore, T should contain exactly
those vertices that are reachable from the vertex that was chosen as the root.

locale bfs_tree = directed_tree T root + subgraph T G for G T root +

assumes root_in_G: "root ∈ verts G"

and all_reachables: "verts T = {v. root →∗G v}"

We use this locale to assume the existence of such a conversion function. Its parameters
are a well-formed directed graph and a vertex that should be chosen as the root.

locale bfs_locale =

fixes bfs :: "('a, 'b) pre_digraph ⇒ 'a ⇒ ('a, 'b) pre_digraph"

assumes bfs_correct:

"[[wf_digraph G; r ∈ verts G; bfs G r = T]] =⇒ bfs_tree G T r"
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Since IKKBZ works on acyclic query graphs, we define undirected trees as connected
graphs in which |arcs| ≤ 2 · (|verts| − 1) holds. This is based on the fact that the number
of edges in a tree is the number of vertices minus one. However, since graphs are
modeled as bidirected graphs, the number of arcs is doubled. Furthermore, we weaken
the condition to less or equal since it allows instantiating this locale more easily. We
can assume that our query graph is connected because IKKBZ does not consider cross
products which means that the query graph must be connected [8, p. 49].

locale undirected_tree = graph +

assumes connected: "connected G"

and acyclic: "card (arcs G) ≤ 2 * (card (verts G) - 1)"

We combine this locale with the transformation from a graph to a directed tree to
prove that our undirected_tree is really an acyclic graph.

locale undir_tree_todir = undirected_tree G + bfs_locale bfs

for G :: "('a, 'b) pre_digraph"

and bfs :: "('a, 'b) pre_digraph ⇒ 'a ⇒ ('a, 'b) pre_digraph"

In this context, we create an abbreviation that instantiates the first parameter of the
bfs function with the fixed undirected graph:

abbreviation dir_tree_r :: "'a ⇒ ('a, 'b) pre_digraph" where

"dir_tree_r ≡ bfs G"

With these definitions we first prove that the generalization in the acyclic assumption
implies the equality of both sides. Furthermore, we prove that the arcs of a directed tree
combined with the reverse arcs are equal to the set of all edges in a graph:

lemma arcs_compl_un_eq_arcs:

"r ∈ verts G =⇒
{e2 ∈ arcs G. ∃e1 ∈ arcs (dir_tree_r r).

head G e2 = tail G e1 ∧ head G e1 = tail G e2}

∪ arcs (dir_tree_r r) = arcs G"

Moreover, we show that there exists a unique path between every pair of arcs in the
graph and that every path that starts at a vertex r is contained in the directed tree rooted
at r. These lemmas can be seen as proof that the definition of undirected trees is correct.

lemma unique_apath: "[[u ∈ verts G; v ∈ verts G]] =⇒ ∃!p. apath u p v"

lemma apath_in_dir_if_apath_G:

"apath r p v =⇒ pre_digraph.apath (dir_tree_r r) r p v"

Since IKKBZ combines nodes during the normalization phase, it makes sense to use
lists of relations to represent these compound nodes [7, p. 134]. However, converting a
query graph into a directed tree results in a tree with relations as vertices. Therefore, we
introduce a definition that transforms a directed tree into a tree that consists of singleton
lists. We do this by using the image operation on the vertices and wrapping the head
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and tail functions in anonymous functions. The image operation is represented by a
backtick ` and applies a function to all elements of a set.

definition to_list_tree :: "('a list, 'b) pre_digraph" where

"to_list_tree =

(|verts = (λx. [x]) ` verts T, arcs = arcs T,

tail = (λx. [tail T x]), head = (λx. [head T x])|)"

Furthermore, as we discuss in more detail in Section 6.3, some operations of IKKBZ
require additional assumptions to preserve well-formedness. These are that all vertices
are pairwise disjoint and nonempty. Therefore, we fix these in a locale that extends
finite directed trees. It follows directly from the definitions that a finite directed tree
converted with the to_list_tree function satisfies all conditions of this locale.

locale fin_list_directed_tree =

finite_directed_tree T for T :: "('a list,'b) pre_digraph" +

assumes disjoint_verts:

"[[u ∈ verts T; v ∈ verts T; u ̸= v]] =⇒ set u ∩ set v = {}"

and nempty_verts: "v ∈ verts T =⇒ v ̸= []"

6.2 Dtree as an Algebraic Type for Directed Trees
Dtree.thy

This section defines an algebraic type that is equivalent to a finite directed tree. Having
this type simplifies the definitions and proofs required for the IKKBZ algorithm. Even
though it is equivalent only for finite directed trees, this is sufficient for our purposes
since a query_graph is always finite per definition. Dtrees are defined as a recursive
datatype with a root of type ’a and a finite set (fset) of sucessors or children. The set
consists of pairs of a (’a,’b) dtree and an ’b arc that connects this subtree to its parent root:

datatype (dverts:'a, darcs: 'b) dtree

= Node (root: 'a) (sucs: "(('a,'b) dtree × 'b) fset")

The definition directly contains the functions dverts and darcs that return the set of all
vertices or arcs contained in a dtree. Furthermore, the functions root and sucs provide
access to the components of a dtree. Note that even though the definition requires the
use of an fset, we will often convert them to "normal" sets because they have nicer syntax
and are more convenient to use. While, the fset function converts a fset into a set, the
Abs_fset does the inverse transformation. However, to properly use Abs_fset, its input
must be a finite set. In general, fset operations are represented as the set counterparts
surrounded by vertical lines (e.g. |`| instead of `).

Since recursive functions are required to terminate in Isabelle/HOL, we introduce a
lemma called dtree_size_decr which automates the termination proof. It states that the
size of a successor is less than the size of its parent node.
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6.2.1 Well-Formed Dtrees

An arbitrary dtree may not be transformable into a valid directed tree. Therefore, we
introduce additional constraints that a well-formed dtree has to satisfy. The first condition
is that each arc can only appear once in a dtree. Otherwise, it would be unclear where an
arc should lead to. For example "Node A {(Node B {},e), (Node C {},e)}" which is the dtree
shown in Figure 7a has the arc e leading from A to both B and C. Therefore, it would
not be possible to define a head function which is necessary for a directed tree.

A

B C

e e

(a) dtree with duplicate arc e

A

B

C

C

e1

e3

e2

(b) dtree with duplicate vert C

Figure 7: Examples of dtrees that are not well-formed

Hence our first condition is that all arcs should be unique within a dtree. We express
this by building the multiset of arcs and requiring that every arc appears exactly once.
Isabelle/HOL uses the "#" symbol to distinguish between multiset and set notation.

fun darcs_mset :: "('a,'b) dtree ⇒ 'b multiset" where

"darcs_mset (Node r xs) = (∑(t,e) ∈ fset xs. {#e#} + darcs_mset t)"

definition wf_darcs :: "('a,'b) dtree ⇒ bool" where

"wf_darcs t = (∀x ∈# darcs_mset t. count (darcs_mset t) x = 1)"

Similarly, the vertices of a dtree need to be unique as well. Otherwise, the dtree shown
in Figure 7b would be valid even though it violates the condition that every vertex
should be reachable by a unique path from the root. The implementation also contains
equivalent recursive definitions that do not use multisets which simplifies most proofs.
However, we omit these here since they are not important to understand the definitions.

fun dverts_mset :: "('a,'b) dtree ⇒ 'a multiset" where

"dverts_mset (Node r xs) = {#r#} + (∑(t,e) ∈ fset xs. dverts_mset t)"

definition wf_dverts :: "('a,'b) dtree ⇒ bool" where

"wf_dverts t = (∀x ∈# dverts_mset t. count (dverts_mset t) x = 1)"

Finally, we summarize these conditions in a locale of well-formed dtrees:

locale wf_dtree =

fixes t :: "('a,'b) dtree"

assumes wf_arcs: "wf_darcs t"

and wf_verts: "wf_dverts t"
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6.2.2 Transformation from Dtree to Directed Tree

To transform a dtree into a directed tree, we need sets of vertices and arcs as well as two
functions that map arcs to their tail and head. Since we already have the sets given by
dverts and darcs, we only need to define functions that correctly map edges to a head
and tail. If an arc is included in the successors of a node, the tail should be the root of
this node. Otherwise, we recursively proceed in the subtree which contains this edge. If
an arc should not be contained at all, we map it to the value of some default function
which we will assume as a parameter. We use the ffold function to iterate over the fset of
successors. It works similar to folding functions for lists and has three parameters: The
first is a function f which is applied to an element of the set and the accumulator. The
second parameter is an initial value for this accumulator and the final one is an fset to
iterate over.

fun dtail :: "('a,'b) dtree ⇒ ('b ⇒ 'a) ⇒ 'b ⇒ 'a" where

"dtail (Node r xs) def = (λe. if e ∈ snd ` fset xs then r

else (ffold (λ(x,e2) b.

if (x,e2) /∈ fset xs ∨ e /∈ darcs x ∨ ¬ wf_darcs (Node r xs)

then b else dtail x def) def xs) e)"

Note that the anonymous function which is used as the first argument of the ffold
only proceeds recursively if the input is contained in the set of children xs and the arcs
are well-formed. The first condition may seem redundant, but it is necessary because
the termination proof does not use the information that recursive calls are only done
for children of this node. Moreover, well-formedness is required since the lemmas
about the ffold function are only available for functions whose functional composition is
commutative:

locale comp_fun_commute =

fixes f :: "'a ⇒ 'b ⇒ 'b"

assumes comp_fun_commute: "f y ◦ f x = f x ◦ f y"

lemma dtail_commute:

"comp_fun_commute (λ(x,e2) b.

if (x,e2) /∈ fset xs ∨ e /∈ darcs x ∨ ¬ wf_darcs (Node r xs)

then b else dtail x def)"

We define the dhead function analogously by mapping an arc to the root of the subtree
it forms a pair with. The additional conditions allow us to prove commutativity for this
function as well.

fun dhead :: "('a,'b) dtree ⇒ ('b ⇒ 'a) ⇒ 'b ⇒ 'a" where

"dhead (Node r xs) def = (λe. (ffold (λ(x,e2) b.

if (x,e2) /∈ fset xs ∨ e /∈ (darcs x ∪ {e2}) ∨ ¬ wf_darcs (Node r xs)

then b else if e=e2 then root x else dhead x def e) (def e) xs))"
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Finally, we put all four functions together to obtain a directed tree. Since both dtail
and dhead require a function with default values for arcs not contained in the dtree, we
set these as parameters. One possible instantiation of these default functions is to map
everything to the root of the dtree that should be converted.

abbreviation from_dtree

:: "('b ⇒ 'a) ⇒ ('b ⇒ 'a) ⇒ ('a,'b) dtree ⇒ ('a,'b) pre_digraph"

where

"from_dtree deft defh t ≡
(|verts = dverts t, arcs = darcs t,

tail = dtail t deft, head = dhead t defh|)"

In the context of wf_dtree we can show that this conversion does indeed produce a
finite directed tree rooted at the root of the dtree:

theorem from_dtree_fin_directed:

"finite_directed_tree (from_dtree dt dh t) (root t)"

6.2.3 Transformation from Directed Tree to Dtree

The definitions and proofs in this section are all in the context of finite_directed_tree since
we need the finiteness to be able to transform a directed tree into an equivalent dtree.
For our transformation we use an auxiliary function that converts the subtree rooted at
a vertex r into an equivalent dtree. While the root of the node is set to the vertex r, we
define the successors as the outgoing arcs of r and the subtrees rooted at the head of
these arcs.

function to_dtree_aux :: "'a ⇒ ('a,'b) dtree" where

"to_dtree_aux r = Node r (Abs_fset {(x,e).

(if e ∈ out_arcs T r then x = to_dtree_aux (head T e) else False)})"

Since this function is recursive, we need to show its termination. We use the sets of
reachable vertices to do so: Since all vertices reachable in the subtree of a child of r are
reachable from r as well, no new elements are added to the set. Furthermore, r itself is
not reachable from its child. Otherwise, T would not be a directed tree. Therefore, the
cardinality of the set of reachable vertices decreases from parent to child. While it may
seem equivalent to use "P ∧Q" instead of an "if P then Q else False" construct, they
actually generate different goals for the termination proof. Hence, we need this if-clause
to be able to prove the termination of this function. Otherwise, the assumption that e is
an outgoing arc of r is missing and we could not use this lemma:

lemma child_card_decr:

assumes "e ∈ out_arcs T r"

shows "Finite_Set.card {x. (head T e) →∗T x}

< Finite_Set.card {x. r →∗T x}"
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6.2 Dtree as an Algebraic Type for Directed Trees

To transform a complete directed tree, we only need to call this auxiliary function
with the root of the tree:

definition to_dtree :: "('a,'b) dtree" where

"to_dtree = to_dtree_aux root"

We show that the auxiliary function produces a well-formed dtree by verifying the
conditions wf_darcs and wf_dverts. Since to_dtree only uses this auxiliary function, we
know that it produces a well-formed dtree as well.

theorem wf_to_dtree: "wf_dtree to_dtree"

Moreover, we prove that the dverts set of a dtree created by to_dtree_aux r is the set of
reachable vertices if r is a vertex of T. Since the root is always a vertex and all vertices are
reachable from the root, the set of dverts of a converted tree is exactly the set of vertices.

lemma dverts_eq_reachable:

"r ∈ verts T =⇒ dverts (to_dtree_aux r) = {x. r →∗T x}"

lemma dverts_eq_verts: "dverts to_dtree = verts T"

Finally, we show that the sets darcs and arcs are equal as well by using that every arc
is an outgoing arc of some vertex and all outgoing arcs of a vertex r are in the darcs of
to_dtree_aux r. By combining these two lemmas with the previous result that all vertices
are contained in the dtree, we conclude that all arcs are contained in the darcs as well.
Since every element contained in darcs is an outgoing arc and all of these are arcs, we
can prove that the other direction holds as well. Therefore, both sets are equal:

lemma darcs_eq_arcs: "darcs to_dtree = arcs T"

With these lemmas, we can show that transforming from a wf_dtree to a directed tree
and back results in the original dtree:

interpretation T: finite_directed_tree "from_dtree dt dh t" "root t"

theorem to_from_dtree_id: "T.to_dtree dt dh = t"

Furthermore, we define an abbreviation in the context of finite_directed_tree which uses
the original tail and head functions as default values. This way, the values of dtail and
dhead are guaranteed to be equal to the original functions even if they are called with an
arc that is not contained in T. This allows us to show the identity of transforming from
a directed tree to a dtree and then back to a directed tree.

abbreviation from_dtree :: "('a,'b) dtree ⇒ ('a,'b) pre_digraph" where

"from_dtree t ≡ Dtree.from_dtree (tail T) (head T) t"

lemma from_to_dtree_eq_orig: "from_dtree (to_dtree) = T"
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6 Extensions of Directed Trees

6.2.4 Additional Dtree Functions

In this subsection, we explain some other basic functions that we need to formalize
IKKBZ. The first one is called is_subtree and determines whether one dtree occurs within
another one. Based on these, we also define strict subtrees as subtrees that are not equal.

fun is_subtree :: "('a,'b) dtree ⇒ ('a,'b) dtree ⇒ bool" where

"is_subtree x (Node r xs) =

(x = Node r xs ∨ (∃(y,e) ∈ fset xs. is_subtree x y))"

We use this function in Chapter 7 to express properties that would otherwise require
recursive definitions. The relation it represents is a partial order. This means that it is
reflexive, transitive, and antisymmetric.

The next function, num_leaves, calculates the number of leaves in a tree. We will use it
to prove the termination of some IKKBZ related functions in Chapter 7.

fun num_leaves :: "('a,'b) dtree ⇒ nat" where

"num_leaves (Node r xs) =

(if xs = {||} then 1 else (∑(t,e) ∈ fset xs. num_leaves t))"

Furthermore, we define a max_deg function which tells us the maximal (outgoing)
degree of a dtree. Its recursive definition takes the maximum of the degrees of its children
and its own successor cardinality. It uses the Max function which returns the maximum
of a set of values and the max function which returns the maximum of two input values.

fun max_deg :: "('a,'b) dtree ⇒ nat" where

"max_deg (Node r xs) =

(if xs = {||} then 0

else max (Max (max_deg ` fst ` fset xs)) (fcard xs))"

One possible alternative definition combines max and Max to a single Max call without
case distinctions by inserting fcard xs into the set. Another equivalent nonrecursive
definition is given by mapping the set of subtrees to their cardinality.

We can use this function to decide whether a dtree is a chain: If the maximum degree
in a dtree is less than or equal to one, every vertex has at most one successor. Therefore,
the dtree is actually a chain. This allows us to express such a dtree as a list. Hence, we
introduce transformation functions that convert a dtree into a list and vice versa.

Since we only want to convert dtrees for which max_deg t ≤ 1 holds, we simplify
our definition such that nodes that do not have exactly one child are treated as nodes
without successors. Furthermore, we store edges and vertices in the list so that we can
reconstruct a dtree. However, since the number of arcs is less than the number of vertices,
we exclude the root of the dtree. This way the number of arcs and vertices is equal and
every vertex can be stored as a pair with its incoming arc.

function dtree_to_list :: "('a,'b) dtree ⇒ ('a×'b) list" where

"dtree_to_list (Node r {|(t,e)|}) = (root t,e) # dtree_to_list t"

| "∀x. xs ̸= {|x|} =⇒ dtree_to_list (Node r xs) = []"
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To transform from list to dtree, we use the dtree_from_list function. Since the root is
excluded from the conversion to a list, we need it as an additional parameter for this
function. The list is transformed by setting the element of the node as the root parameter
and the first pair as the only successor of this node:

fun dtree_from_list :: "'a ⇒ ('a×'b) list ⇒ ('a,'b) dtree" where

"dtree_from_list r [] = Node r {||}"

| "dtree_from_list r ((v,e)#xs) = Node r {|(dtree_from_list v xs, e)|}"

We show that these functions correctly preserve the sets of vertices and arcs. Of
course, it is necessary to assume that the input of dtree_to_list is a chain since it will
otherwise not process the complete dtree. The following are the lemmas for the arc sets,
but the ones for vertices are quite similar.

lemma dtree_to_list_eq_darcs:

"max_deg t ≤ 1 =⇒ snd ` set (dtree_to_list t) = darcs t"

lemma dtree_from_list_eq_darcs:

"darcs (dtree_from_list r xs) = snd ` set xs"

Furthermore, we show the identity of the transformation that uses both functions and
prove that dtree_to_list always produces a dtree with a maximum degree of less than or
equal to one:

lemma dtree_from_to_list_id:

"max_deg t ≤ 1 =⇒ dtree_from_list (root t) (dtree_to_list t) = t"

lemma dtree_to_from_list_id: "dtree_to_list (dtree_from_list r xs) = xs"

lemma dtree_from_list_deg_le_1: "max_deg (dtree_from_list r xs) ≤ 1"

To take advantage of list-based operations, we need to formulate the well-formedness
properties of wf_dtrees for lists. This allows us to prove whether a function that alters a
list preserves the well-formedness or not. We define the two properties using a recursive
function for each of them. However, they are both equivalent to a definition that uses
the distinct function.

fun wf_list_arcs :: "('a×'b) list ⇒ bool" where

"wf_list_arcs [] = True"

| "wf_list_arcs ((v,e)#xs) = (e /∈ snd ` set xs ∧ wf_list_arcs xs)"

fun wf_list_verts :: "('a×'b) list ⇒ bool" where

"wf_list_verts [] = True"

| "wf_list_verts ((v,e)#xs) = (v /∈ fst ` set xs ∧ wf_list_verts xs)"

We prove the correctness of these functions by showing that these properties hold if
and only if the corresponding well-formedness property holds for a created dtree:

lemma wf_darcs_iff_wf_list_arcs:

"wf_list_arcs xs ←→ wf_darcs (dtree_from_list r xs)"
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6 Extensions of Directed Trees

lemma wf_dverts_iff_wf_list_verts:

"r /∈ fst ` set xs ∧ wf_list_verts xs

←→ wf_dverts (dtree_from_list r xs)"

Finally, we show that these conditions hold initially when a well-formed dtree is
transformed into a list:

lemma wf_list_arcs_if_wf_darcs:

"wf_darcs t =⇒ wf_list_arcs (dtree_to_list t)"

lemma wf_list_verts_if_wf_dverts:

"wf_dverts t =⇒ wf_list_verts (dtree_to_list t)"

6.3 List Dtrees List_Dtree.thy

As mentioned before, IKKBZ works on directed trees with compound nodes that we
represent by lists. However, when combining two nodes, our basic conditions of well-
formedness are not sufficient to be preserved. For example, the dtree shown in Figure
8a satisfies all properties of the wf_dtree locale. Even so, combining the nodes B and C
by appending their elements results in the dtree shown in Figure 8b. This clearly has a
duplicate node [B, C] and is, therefore, not well-formed.

[A]

[B, C] [B]

[C]

e1 e2

e3

(a) dtree that satisfies all properties of wf_dtree

[A]

[B, C] [B, C]

e1 e2

(b) dtree after combining the nodes B and C

Figure 8: Example of a dtree that does not preserve well-formedness

The problem with the first dtree is that even though the nodes themselves are unique,
the contents are duplicated. Moreover, during the execution of IKKBZ, we do not want
duplicated relations. Therefore, this section explains stricter conditions for list-based
dtrees. First, we define a function that returns the "real" set of elements in a list-based
dtree. In this section, we use it to formulate our well-formedness condition, but we will
also use it in Chapter 7 to show the correctness of properties concerning the set of all
relations.

fun dlverts :: "('a list,'b) dtree ⇒ 'a set" where

"dlverts (Node r xs) = set r ∪ (
⋃
x ∈ fset xs. dlverts (fst x))"
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We prefer this recursive definition because it simplifies some proofs. However, it is
equivalent to computing the union of all sets of dverts. In the well-formedness condition,
we require pairwise disjointness of the dlverts of children and the content of their parent
element. Additionally, we disallow empty lists, since they interfere with wf_dverts and
should not appear during IKKBZ execution anyway.

abbreviation disjoint_dlverts :: "(('a list, 'b) dtree×'b) fset ⇒ bool"

where

"disjoint_dlverts xs ≡
(∀(x,e1) ∈ fset xs. ∀(y,e2) ∈ fset xs.

dlverts x ∩ dlverts y = {} ∨ (x,e1) = (y,e2))"

fun wf_dlverts :: "('a list,'b) dtree ⇒ bool" where

"wf_dlverts (Node r xs) =

(r ̸= [] ∧ (∀(x,e1) ∈ fset xs.

set r ∩ dlverts x = {} ∧ wf_dlverts x) ∧ disjoint_dlverts xs)"

Since we excluded empty lists, two elements can only be equal if their sets are not
disjoint. Hence, we can show that wf_dlverts implies wf_dverts:

lemma wf_dverts_if_wf_dlverts: "wf_dlverts t =⇒ wf_dverts t"

Finally, we use this new condition combined with the wf_darcs property to set up a
new locale and show that they form a subset of wf_dtrees:

locale list_dtree =

fixes t :: "('a list,'b) dtree"

assumes wf_arcs: "wf_darcs t"

and wf_lverts: "wf_dlverts t"

sublocale list_dtree ⊆ wf_dtree

We can now show equivalence to the fin_list_directed_tree locale by proving that the
transformation functions called in the context of one locale result in a valid tree of
the other locale. More concretely, this means that list_dtrees can be converted into
fin_list_directed_trees and vice versa.

theorem list_dtree_to_dtree: "list_dtree to_dtree"

theorem from_dtree_fin_list_dir:

"fin_list_directed_tree (root t) (from_dtree dt dh t)"

Furthermore, similar to the previous section, we define the wf_dlverts property for
lists as well, such that we can properly use our list transformations.

fun wf_list_lverts :: "('a list×'b) list ⇒ bool" where

"wf_list_lverts [] = True"

| "wf_list_lverts ((v,e)#xs) =

(v ̸= [] ∧ (∀v2 ∈ fst ` set xs.

set v ∩ set v2 = {}) ∧ wf_list_lverts xs)"
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As in the previous section, we prove its correctness by showing the relationship
between wf_list_lverts, wf_dlverts, and the two transformation functions. However, we
need to add the condition for the root separately since the root node is not contained in
the list used by the transformations.

lemma wf_list_lverts_if_wf_dlverts:

"wf_dlverts t =⇒ wf_list_lverts (dtree_to_list t)"

lemma wf_dlverts_iff_wf_list_lverts:

"(∀v ∈ fst ` set xs. set r ∩ set v = {}) ∧ r ̸= [] ∧ wf_list_lverts xs

←→ wf_dlverts (dtree_from_list r xs)"
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In this chapter, we define an implementation of IKKBZ in Isabelle/HOL and prove its
correctness. Moreover, we show that it produces an optimal solution within a restricted
set of join trees. Finally, we show how to apply it to some example cost functions from
Chapter 5. The definitions and proof ideas build on the corresponding chapter of the
“Query Optimization” lecture [9, 10] and the “Building Query Compilers” paper [8]. Of
course, these are based on the original IKKBZ papers [5, 7].

7.1 IKKBZ Definitions and Correctness IKKBZ.thy

The general idea of the IKKBZ algorithm is to operate on the query graph interpreted
as a directed tree by directing all edges away from a relation that is chosen as its root.
Furthermore, the nodes are annotated with a rank that corresponds to the cost function
according to the ASI property. Figure 9b shows such a so-called precedence graph
rooted in R3 for the example query graph shown in Figure 9a. While the annotated
ranks correspond to the Cout cost function, their concrete calculation is not important
right now and is explained in Section 7.3 [5, p. 497][7, p. 134].

|R1| = 100

|R3| = 10 |R2| = 30

|R4| = 20

|R5| = 400

1
10

1
3

1
5

1
2

(a) Query graph

R3

R1
9

10 R2
9
10

R4
3
4

R5
199
200

(b) Precedence graph rooted in R3

Figure 9: Precedence graph rooted in R3 for an example query graph

Inside such a precedence graph, IKKBZ looks for a node with more than one child
and only chains as children. This means that all of the nodes in the subtrees of these
children must have at most one successor. A node that satisfies both of these conditions
is called a wedge. In our example, we can see that the root R3 is a wedge since all
of its (strict) subtrees are chains and it has two children. In these chains, we look for
contradictory sequences that occur if the rank of a node is smaller than the rank of its
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7 IKKBZ

parent. In Figure 9b, we can see that there are contradictory sequences in the right chain
since R2 has a larger rank than R4 but needs to be before R4 according to the precedence
graph [5, p. 497][7, p. 134].

After finding such contradictory sequences, IKKBZ combines the two nodes into a
new node by appending their contents. The idea behind this combination is that we
would achieve a lower cost by swapping the two nodes because of the ASI property.
However, we are not allowed to do so since we want to follow the structure of the
precedence graph. Hence, it makes sense to have the two nodes be adjacent since putting
a node between these two would allow to exchange it without increasing the cost. In
our example, we can see that the only node that could be between R2 and R4 is R1 if
we follow the structure of the precedence graph. However, since the rank of R1 is equal
to the rank of R2, swapping the two nodes does not increase the cost according to the
ASI property. Therefore, we combine the two nodes which results in the graph shown
in Figure 10a. This so-called normalization is repeated until there are no contradictory
sequences left. In our example, we can see that there are no contradictory sequences in
the left subtree since it consists of a single node. Furthermore, the right subtree does
not have any contradictions either since the rank of R2R4 is lower than the rank of R5.
Hence, the normalization is complete for this wedge [5, p. 497][7, p. 134].

R3
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9
10 R2R4

39
50

R5
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200

(a) Result of normalizing R2 and R4

R3

R2R4
39
50

R1
9

10

R5
199
200

(b) Result of merging the children of R3

Figure 10: Example execution of IKKBZ-Sub on the precedence graph rooted at R3

Once there are no more contradictions left, the algorithm merges the subtrees of the
wedge in increasing order according to our rank function. In Figure 10b we can see
the result of merging the two subtrees from our previous graph. IKKBZ repeats this
process of finding a wedge, normalizing, and merging until only a single chain is left.
In our example, this is the case after this first iteration. Therefore, the execution of this
process which we call IKKBZ-Sub terminates by unfolding (denormalizing) the nodes.
Hence, IKKBZ-Sub produces the sequence R3R2R4R1R5 if we start its execution with the
precedence graph rooted at R3. Since we do not know which relation to pick as the root,
IKKBZ simply tries all relations and chooses the solution with minimal cost. However,
we omit the other four IKKBZ-Sub executions and the final result for our example since
they are quite similar [5, p. 497][7, p. 134][8, p. 54].
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7.1.1 IKKBZ-Sub

We start by defining the IKKBZ-Sub algorithm based on list_dtrees and later using the
transformation functions from the previous chapters to formulate the complete algorithm.
Since we need a rank function to execute this algorithm, we define a ranked_dtree locale
which fixes such a rank function. Additionally, it fixes a comparator for pairs consisting
of a list of ’a relations and an ’b edge. Furthermore, this comparator must only return
that two pairs are equal if either the intersection of the sets of lists is nonempty or the
edges are equal. We need this comparator to define the merging function as we will
explain in the next subsection.

locale ranked_dtree = list_dtree t for t :: "('a list,'b) dtree" +

fixes rank :: "'a list ⇒ real"

fixes cmp :: "('a list×'b) comparator"

assumes cmp_antisym:

"[[v1 ̸= []; v2 ̸= []; compare cmp (v1,e1) (v2,e2) = Equiv]]

=⇒ set v1 ∩ set v2 ̸= {} ∨ e1 = e2"

While it would be possible to compare two lists by assuming either ’a::linorder or
’b::linorder, fixing a comparator is more general. Comparators assign each pair of elements
a value of type comp. This datatype consists of the three values Less, Equiv, and Greater.
Furthermore, a comparator needs to be reflexive, transitive, and the Greater and Less
results must be symmetric to each other. This means that cmp a b must return Less if
and only if cmp b a returns Greater. Therefore, a possible definition of cmp based on
’a::linorder could look like this:

lift_definition cmp :: "('a list × 'b) comparator" is

"(λx y. if hd (fst x) < hd (fst y) then Less

else if hd (fst x) > hd (fst y) then Greater else Equiv)"

Merging

First, we define an auxiliary merging definition that assumes that all children of the
input dtree are normalized chains. It turns each chain into a list and utilizes the
Sorting_Algorithms.merge function from the mergesort algorithm to merge these lists.
This function merges two lists in ascending order according to a comparator. However,
it does not change the order of elements within the same list. Hence, merging [1, 2, 7]
and [4, 8, 5] according to the usual ordering for natural numbers results in [1, 2, 4, 7, 8, 5].
Therefore, it requires the sortedness of both of its inputs to produce a sorted output list.
Furthermore, we use the ffold function to iterate over all children and combine them
all into a single list. This has the advantage that we do not need to pick two specific
chains to merge in each step. In the end, we transform this list back into a dtree which is
now a new chain. To keep the definition and lemmas more compact, we introduce an
abbreviation merge_f for the input function of ffold.
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abbreviation merge_f :: "'a list ⇒ (('a list, 'b) dtree×'b) fset

⇒ ('a list, 'b) dtree×'b ⇒ ('a list×'b) list ⇒ ('a list×'b) list"

where

"merge_f r xs ≡
λ(t,e) b. if (t,e) ∈ fset xs ∧ list_dtree (Node r xs)

∧ (∀(v,e') ∈ set b.

set v ∩ dlverts t = {} ∧ v ̸= [] ∧ e' /∈ darcs t ∪ {e})

then Sorting_Algorithms.merge cmp' (dtree_to_list (Node r {|(t,e)|})) b

else b"

definition merge :: "('a list,'b) dtree ⇒ ('a list,'b) dtree" where

"merge t1 ≡ dtree_from_list (root t1)

(ffold (merge_f (root t1) (sucs t1)) [] (sucs t1))"

The comparator cmp’ compares elements according to their rank and uses cmp as
a tie-breaker to ensure a unique ordering of all nodes. This is accomplished by the
disjointness requirement enforced within the condition of the if-clause combined with
the locale assumption regarding cmp.

lift_definition cmp' :: "('a list×'b) comparator" is

"(λx y. if rank (rev (fst x)) < rank (rev (fst y)) then Less

else if rank (rev (fst x)) > rank (rev (fst y)) then Greater

else compare cmp x y)"

Combined with the other conditions of the if-clause of merge_f, this ensures that the
merging operation is commutative. This allows us to use lemmas regarding ffold which
we need to prove certain properties of merge.

lemma merge_commute: "comp_fun_commute (merge_f r xs)"

By using this commutativity, we prove the correctness of this operation by induction
on the set of successors. The first proofs show that the sets of dverts, dlverts, and darcs
are preserved if all children are chains. While the equality for dlverts follows directly
from the unchanged dverts set, we prove the other two preservations using auxiliary
lemmas that induct on the argument of ffold.

lemma dverts_merge_eq:

assumes "∀t ∈ fst ` fset (sucs t). max_deg t ≤ 1"

shows "dverts (merge t) = dverts t"

lemma darcs_merge_eq:

assumes "∀t ∈ fst ` fset (sucs t). max_deg t ≤ 1"

shows "darcs (merge t) = darcs t"

Furthermore, we show that this operation preserves all the invariants. Since the added
assumption of ranked_dtree does not change, we only need to show that the wf_darcs and
wf_dlverts properties are preserved. This follows again by using the ffold lemmas. Hence,
the merge operation preserves all the invariants of the relevant locales.
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theorem merge_list_dtree: "list_dtree (merge t)"

corollary merge_ranked_dtree: "ranked_dtree (merge t) cmp"

Moreover, we prove that it preserves the distinctness of the nodes and that the head
of the root of the input dtree does not change:

lemma distinct_merge:

assumes "∀v ∈ dverts t. distinct v" and "v ∈ dverts (merge t)"

shows "distinct v"

lemma merge_hd_root_eq: "hd (root (merge t1)) = hd (root t1)"

Finally, we define a function that recursively finds a wedge and uses the merge function
to turn it into a chain. However, instead of finding only one wedge, we recursively
descend into all successors. As with merge, this simplifies the definition since we do not
need to pick an arbitrary element. Furthermore, doing so does not affect the result since
all wedges need to have their children merged at some point.

fun merge1 :: "('a list,'b) dtree ⇒ ('a list,'b) dtree" where

"merge1 (Node r xs) = (

if fcard xs > 1 ∧ (∀t ∈ fst ` fset xs. max_deg t ≤ 1)

then merge (Node r xs)

else Node r ((λ(t,e). (merge1 t,e)) |`| xs))"

With the lemmas of the merge function it is quite simple to prove that the merge1
function preserves all the same properties as merge.

Normalization

For the normalization, we first define the function normalize1 which combines the root
with its child if they are contradictory sequences. Otherwise, it descends recursively
similar to merge1.

function normalize1 :: "('a list,'b) dtree ⇒ ('a list,'b) dtree" where

"normalize1 (Node r {|(t1,e)|}) =

(if rank (rev (root t1)) < rank (rev r)

then Node (r @ root t1) (sucs t1)

else Node r {|(normalize1 t1,e)|})"

| "∀x. xs ̸= {|x|} =⇒
normalize1 (Node r xs) = Node r ((λ(t,e). (normalize1 t,e)) |`| xs)"

Then we write the normalize function which calls normalize1 until it reaches a fixpoint.
This means that there are no more contradictions in the dtree which was the goal of this
function.

fun normalize :: "('a list,'b) dtree ⇒ ('a list,'b) dtree" where

"normalize t1 =

(let t2 = normalize1 t1 in if t1 = t2 then t2 else normalize t2)"
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To prove the termination of this function, we show that the size of the result of
normalize1 is smaller than its input if there was some change:

lemma normalize1_size_decr:

"normalize1 t1 ̸= t1 =⇒ size (normalize1 t1) < size t1"

Similar to the merge function, we prove that these functions preserve the invariants
and sets. However, this time we can only show equivalence for the dlverts set since arcs
are removed and vertices altered when combining nodes.

lemma normalize_darcs_sub: "darcs (normalize t1) ⊆ darcs t1"

lemma normalize_dlverts_eq: "dlverts (normalize t1) = dlverts t1"

Instead of normalizing only below wedges, we normalize the complete dtree since that
generalizes and, therefore, simplifies some properties. One property we can prove this
way is that any subtree of a normalized dtree has a rank less than or equal to its child if
it only has a single successor:

lemma normalize_sorted_ranks:

"[[is_subtree (Node r {|(t1,e1)|}) (normalize t)]]

=⇒ rank (rev r) ≤ rank (rev (root t1))"

Denormalization

The last component that we need is the denormalize function. This one simply appends
all the nodes to create a list that is in the correct order. Since we only care about the
cases where the input dtree is a chain, we treat all cases where the successor set is not a
singleton as if it were a leaf node.

function denormalize :: "('a list, 'b) dtree ⇒ 'a list" where

"denormalize (Node r {|(t,e)|}) = r @ denormalize t"

| "∀x. xs ̸= {|x|} =⇒ denormalize (Node r xs) = r"

We prove its correctness by showing that it results in a list whose set is equal to
the dlverts set of a dtree if it is a chain. Moreover, we prove that the well-formedness
combined with only distinct lists as nodes results in a distinct list with the head of the
root as the first element:

lemma denormalize_set_eq_dlverts:

"max_deg t1 ≤ 1 =⇒ set (denormalize t1) = dlverts t1"

lemma denormalize_distinct:

"[[∀v ∈ dverts t1. distinct v; wf_dlverts t1]]

=⇒ distinct (denormalize t1)"

lemma denormalize_hd_root_wf:

"wf_dlverts t =⇒ hd (denormalize t) = hd (root t)"
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Full IKKBZ-Sub

Finally, we combine the normalize and merge1 functions in the definition of ikkbz_sub
which repeats these two steps until the dtree is a single chain.

function ikkbz_sub :: "('a list,'b) dtree ⇒ ('a list,'b) dtree" where

"ikkbz_sub t1 =

(if max_deg t1 ≤ 1 then t1 else ikkbz_sub (merge1 (normalize t1)))"

To prove its termination, we show that merge1 decreases the number of leaves if
max_deg is greater than one. Since normalize does not increase the number of leaves
either, we can show that each iteration of ikkbz_sub decreases the number of leaves.

lemma ikkbz_num_leaves_decr:

"max_deg t1 > 1 =⇒ num_leaves (merge1 (normalize t1)) < num_leaves t1"

From the previous lemmas about merge1 and normalize we can conclude that all the
same properties hold for ikkbz_sub as well. Additionally, it follows directly from the
termination condition that the resulting dtree consists of a single chain. Combining these
results with the denormalize lemmas leads to the correctness of the ikkbz_sub function:

corollary denormalize_ikkbz_eq_dlverts:

"set (denormalize (ikkbz_sub t)) = dlverts t"

corollary distinct_denormalize_ikkbz_sub:

"∀v ∈ dverts t. distinct v =⇒ distinct (denormalize (ikkbz_sub t))"

corollary denormalize_ikkbz_sub_hd_root:

"hd (denormalize (ikkbz_sub t)) = hd (root t)"

So far, the execution of ikkbz_sub started with a list-based dtree. However, we want
to start IKKBZ-Sub on a (finite) directed tree rooted at some relation root. Therefore,
we define the precedence_graph locale which extends finite_directed_trees by rank and cmp
parameters which we also added in the ranked_dtree locale. Since we want to use these
to instantiate this locale, the comparator needs to satisfy the same assumption that is
required in the ranked_dtree locale. Additionally, we fix a cost function and assume that
it satisfies the ASI property. We will use this in Section 7.2 to prove the optimality of
IKKBZ.

locale precedence_graph = finite_directed_tree +

fixes rank :: "'a list ⇒ real"

fixes cost :: "'a list ⇒ real"

fixes cmp :: "('a list×'b) comparator"

assumes asi_rank: "asi rank root cost"

and cmp_antisym:

"[[v1 ̸= []; v2 ̸= []; compare cmp (v1,e1) (v2,e2) = Equiv]]

=⇒ set v1 ∩ set v2 ̸= {} ∨ e1 = e2"
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In this context, we define a transformation to a list-based dtree by combining two of
our transformation functions:

definition to_list_dtree :: "('a list, 'b) dtree" where

"to_list_dtree = finite_directed_tree.to_dtree to_list_tree [root]"

Moreover, we use our tranformation lemmas to show that this produces a ranked_dtree
and define a new ikkbz_sub function which executes the ranked_dtree’s ikkbz_sub function
on this result.

interpretation t: ranked_dtree to_list_dtree

definition ikkbz_sub :: "'a list" where

"ikkbz_sub = denormalize (t.ikkbz_sub to_list_dtree)"

Finally, we combine our results for the ranked_dtree’s ikkbz_sub function with the
lemmas of our transformation functions to prove that the new ikkbz_sub produces the
desired results. This means that it contains every vertex of T exactly once and the root is
the first node in the sequence.

7.1.2 Complete IKKBZ

Since we want to run the complete IKKBZ algorithm on an acyclic query graph, we
combine the query_graph and undir_tree_todir locales in the tree_query_graph locale. Given
that the undir_tree_todir locale includes the transformation from graph to directed tree,
we can use this to generate a precedence graph from the query graph.

locale tree_query_graph = undir_tree_todir G + query_graph G for G

Furthermore, we extend this locale by fixing a cost function cost which we want
to optimize and the comparator that we need for our precedence_graph locale. We
split this definition into separate locales since we want to start execution based on
cmp_tree_query_graph and derive the additional assumptions from a proper cost function.

locale cmp_tree_query_graph = tree_query_graph +

fixes cmp :: "('a list×'b) comparator"

assumes cmp_antisym:

"[[v1 ̸= []; v2 ̸= []; compare cmp (v1,e1) (v2,e2) = Equiv]]

=⇒ set v1 ∩ set v2 ̸= {} ∨ e1 = e2"

locale ikkbz_query_graph = cmp_tree_query_graph +

fixes cost :: "'a joinTree ⇒ real"

fixes cost_r :: "'a ⇒ ('a list ⇒ real)"

fixes rank_r :: "'a ⇒ ('a list ⇒ real)"

assumes asi_rank: "r ∈ verts G =⇒ asi (rank_r r) r (cost_r r)"

and cost_correct:

"[[valid_tree t; no_cross_products t; left_deep t]]

=⇒ cost_r (first_node t) (revorder t) = cost t"
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However, since the ASI property may not be satisfied directly by the original cost
function, we fix two additional functions cost_r and rank_r. These return cost and rank
functions that satisfy the ASI property for sequences starting with some relation r. To
keep the assumptions as general as possible, we only require equivalence of the cost_r
and cost functions for valid, left-deep join trees without cross products.

In this context, we define an abbreviation for generating a precedence graph rooted at
some vertex r and executing ikkbz_sub on it. Furthermore, we abbreviate the call of the
cost function such that we can use it on lists.

abbreviation ikkbz_sub :: "'a ⇒ 'a list" where

"ikkbz_sub r ≡
precedence_graph.ikkbz_sub (dir_tree_r r) r (rank_r r) cmp"

abbreviation cost_l :: "'a list ⇒ real" where

"cost_l xs ≡ cost (create_ldeep xs)"

Based on these abbreviations, we define the complete IKKBZ algorithm which picks
the ikkbz_sub result that has the lowest cost:

definition ikkbz :: "'a list" where

"ikkbz ≡ arg_min_on cost_l {ikkbz_sub r|r. r ∈ verts G}"

Finally, we use the proofs for ikkbz_sub to show that the left-deep tree created from
the ikkbz result is a valid join tree for this query graph:

theorem ikkbz_valid_tree: "valid_tree (create_ldeep ikkbz)"

7.2 Optimality of IKKBZ IKKBZ_Optimality.thy

In this section, we prove that the result of the IKKBZ algorithm produces an optimal
solution within all valid, left-deep join trees without cross products. First, we add
definitions to decide if a sequence conforms to a precedence graph. Then, we use
these to prove that combining two nodes as per the normalization phase preserves the
existence of an optimal solution. However, this requires some additional assumptions
which we will then show to be invariants of the ikkbz_sub function. Finally, we combine
these results to show that there exists an optimal solution for every intermediate set of
dverts. From this, we conclude that the result of the ikkbz function is an optimal solution.

7.2.1 Conforming Sequences

A sequence S = v1, . . . , vk of nodes conforms to a precedence graph if the following
conditions are satisfied [8, p. 50]:

1. for all i with 2 ≤ i ≤ k there exists a j with 1 ≤ j < i such that (vj, vi) ∈ E

2. there is no edge (vi, vj) ∈ E for i > j.
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In other words, the first condition requires that every element except the first needs
to have an incoming arc from a node before itself. Hence, we add this definition in the
context of directed_trees. Note that since list indices in Isabelle/HOL start with zero, all
numbers are shifted by one.

definition forward :: "'a list ⇒ bool" where

"forward xs = (∀i ∈ {1..(length xs - 1)}. ∃j < i. xs!j →T xs!i)"

Furthermore, since list indices are sometimes a bit cumbersome, we include an
equivalent recursive definition based on the reverse list.

fun forward_arcs :: "'a list ⇒ bool" where

"forward_arcs [] = True"

| "forward_arcs [x] = True"

| "forward_arcs (x#xs) = ((∃y ∈ set xs. y →T x) ∧ forward_arcs xs)"

lemma forward_arcs_alt: "forward xs ←→ forward_arcs (rev xs)"

Similarly, we define the second condition which states that there should be no arcs in
the reverse direction. However, this time the recursive definition does not need to work
on a reversed list.

definition no_back :: "'a list ⇒ bool" where

"no_back xs = (∄i j. i < j ∧ j < length xs ∧ xs!j →T xs!i)"

fun no_back_arcs :: "'a list ⇒ bool" where

"no_back_arcs [] = True"

| "no_back_arcs (x#xs) = ((∄y. y ∈ set xs ∧ y →T x) ∧ no_back_arcs xs)"

lemma no_back_arcs_alt: "no_back xs ←→ no_back_arcs xs"

We can now use these definitions to define conforming sequences:

definition seq_conform :: "'a list ⇒ bool" where

"seq_conform xs ≡ forward_arcs (rev xs) ∧ no_back_arcs xs"

Some interesting observations include that this implies that all elements should be
reachable from the first element in a sequence and that forward is sufficient for distinct
sequences since it implies no_back:

lemma hd_reach_all_forward':

"[[length xs > 1; forward xs; x ∈ set xs]] =⇒ hd xs →∗T x"

lemma no_back_if_distinct_forward:

"[[forward xs; distinct xs]] =⇒ no_back xs"

Moreover, two appended lists satisfy the forward property if both are already forward
and there is an edge from the first sequence to the head of the second one.

lemma forward_app:

"[[forward s1; forward s2; ∃x ∈ set s1. x →T hd s2]] =⇒ forward (s1@s2)"
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Furthermore, an arc from outside a forward list into it must lead to the head of said
list. This is the case because every element in a forward sequence must have an incoming
arc unless it is the head. However, since we are in the context of a directed tree, every
vertex can have at most one incoming arc. Therefore, the arc must lead to the head of
the list.

lemma forward_arc_to_head':

assumes "forward ys" and "x /∈ set ys" and "y ∈ set ys" and "x →T y"

shows "y = hd ys"

corollary forward_arc_to_head:

"[[forward ys; set xs ∩ set ys = {}; x ∈ set xs; y ∈ set ys; x →T y]]

=⇒ y = hd ys"

Based on these conforming sequences, we define the notion of before which is true
if one subsequence must occur before another one in any conforming sequence that
contains these two subsequences. The first three requirements are that both sequences
already conform to the precedence graph and that they are disjoint. Furthermore,
there must be an arc from an element of the first sequence to some node of the second
sequence [8, p. 50][10, p. 41].

definition before :: "'a list ⇒ 'a list ⇒ bool" where

"before s1 s2 ≡ seq_conform s1 ∧ seq_conform s2 ∧ set s1 ∩ set s2 = {}

∧ (∃x ∈ set s1. ∃y ∈ set s2. x →T y)"

Even though the definitions according to the “Query Optimization” lecture slides [10,
p. 41] and the “Building Query Compilers” paper [8, p. 50] have another condition
which states that all outgoing edges of the first sequence should lead to the second
sequence, I omitted this condition because it is not necessary for my proofs and seems
to cause some problems as explained on this example:

R1

R2
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50 R3

24
25 R4

19
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R5
5
6 R6

4
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2

(a) Original precedence graph T0

R1

R2
49
50 R3

24
25 R4

19
20

R6, R7
9
15

R5
5
6

(b) Tree after one iteration of IKKBZ

Figure 11: Example of directed trees where nodes are annotated with their rank based
on an example IKKBZ execution from the “Query Optimization” lecture [10,
p. 56f]
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In Figure 11, we can see a precedence graph and the result of executing one iteration
of the IKKBZ algorithm on it. The definitions of a conforming sequence must refer to
the original precedence graph T0 shown in Figure 11a. Otherwise, [R6, R7] would not be
a conforming sequence since there no longer is an arc between R6 and R7 in Figure 11b.
Of course, it would be a conforming sequence by considering the compound [R6, R7]

as a single node. However, this would make the whole definition superfluous since we
would only consider sequences of singletons. Hence, the definitions make more sense
when referring to T0.

In the next iteration of IKKBZ, R4 and [R6, R7] would be combined since rank(R4) >

rank(R6, R7). Therefore, to be able to use the definition of before, we would need that
there is no arc from R4 to anything except [R6, R7]. However, in T0 there is an arc from
R4 to R5 so this does not hold when referring to T0. Hence, the definition of before is
more useful without the fourth condition since it allows us to apply it directly to the
original precedence graph.

A similar problem occurs with the definition of a module which is used in the
optimality proofs from the “Query Optimization” lecture slides [10, p. 48f] and the
“Building Query Compilers” paper [8, p. 53f]. While it would probably be possible to
use these definitions and follow the proofs more closely, it seems to be much simpler to
prove the optimality by referring directly to the original precedence graph. Therefore, I
decided to slightly deviate from these proofs and show the optimality more directly.

But first, we show that our before definition works as intended by proving some
properties. The first of these is that if one sequence is before another one, the combination
of these two lists results in a conforming sequence. The proof is based on combining
the forward_app lemma with the result that the arc connecting these two sequences must
lead to the head of the second one as a consequence of forward_arc_to_head.

lemma seq_conform_if_before: "before xs ys =⇒ seq_conform (xs@ys)"

The second property is that before implies that in any valid sequence which contains
two subsequences U and V for which before U V holds, U must appear before V. With a
valid sequence, we refer to a distinct list with forward arcs where the first element is the
root of the directed tree. To capture the subsequence relationship, we use the predefined
sublist definition. It returns true if the first argument appears within the second one.

definition sublist :: "'a list ⇒ 'a list ⇒ bool" where

"sublist xs ys = (∃ps ss. ys = ps @ xs @ ss)"

lemma sublist_before_if_before:

assumes "hd xs = root" and "forward xs" and "distinct xs"

and "sublist U xs" and "sublist V xs" and "before U V"

shows "∃as bs cs. as @ U @ bs @ V @ cs = xs"

The proof uses that U and V can not overlap due to their disjointness. Therefore, if U
is not before V, it would have to be behind V. However, since V has an incoming arc, it
can not be equal to the root. Moreover, since the list is distinct and every node has at
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most one incoming arc, the only arc to the head of V starts from a node which is in U.
Hence, the sequence can not be forward which is a contradiction.

7.2.2 Combining Preserves an Optimal Solution

This subsection explains some details of the proof that the normalization preserves the
existence of an optimal solution if certain preconditions are satisfied. First, we add two
definitions that define the solution space we are interested in. The first definition is
unique_set_r which returns true if its input satisfies the usual correctness properties. This
means that it should be a list that contains all elements of a set exactly once and the first
element should be the root. While it would be possible to express the last property using
the hd function, it turned out that using take 1 is slightly more convenient. In fwd_sub
we add the additional requirements that the list should satisfy the forward property and
each element of the set of sequences Y should be contained as a sublist.

definition unique_set_r :: "'a ⇒ 'a list set ⇒ 'a list ⇒ bool" where

"unique_set_r r Y ys ←→
set ys =

⋃
(set ` Y) ∧ distinct ys ∧ take 1 ys = [r]"

definition fwd_sub :: "'a ⇒ 'a list set ⇒ 'a list ⇒ bool" where

"fwd_sub r Y ys ←→
unique_set_r r Y ys ∧ forward ys ∧ (∀xs ∈ Y. sublist xs ys)"

The idea behind these definitions is that unique_set_r expresses the basic conditions
required for a valid join tree. These are that a join tree must have distinct relations and
contain exactly the relations contained in the query graph. Furthermore, we restrict it to
those solutions starting with r since IKKBZ-Sub fixes a relation as a root. The forward
restraint in fwd_sub represents exactly the left-deep trees without cross products as we
will show near the end of Section 7.2.4. The last condition is necessary to show that
combinations do not interfere with each other. Moreover, it can be lifted in the end since
we start with lists of singletons. Hence, the condition is automatically satisfied because
of the set equality.

Now we use these definitions to show the existence of a sequence that satisfies fwd_sub
root Y and contains the combination U@V of the contradictory sequences U and V.
Furthermore, it needs to have a cost that is less than or equal to the cost of all other lists
that satisfy fwd_sub root Y.

Therefore, the assumptions that we need for this lemma are that U has to be before V
but does not have a lower rank. Furthermore, we assume that an element of Y must not
have a lower rank than V if it has to be after U but can be before V. While it may not be
obvious that this is the case, we will prove that this is an invariant of IKKBZ in the next
section. Moreover, we assume that there exists some sequence which satisfies fwd_sub
root Y and that the rank and cost function satisfy the ASI property.

We also need some additional conditions for Y to ensure that the goal is provable.
The first two of these conditions are that all elements should be pairwise disjoint and

45



7 IKKBZ

satisfy the forward property. This allows us to rearrange elements of Y without violating
the conditions of fwd_sub. Furthermore, Y should be finite and must not contain the
empty list. Of course, it is also necessary that U and V are contained in Y. Otherwise,
we may not be able to prove the requirement that U@V should be contained. This Y
set will later be instantiated with the dverts of intermediate trees. The following is the
corresponding lemma with all assumptions:

lemma no_gap_if_contr_seq_fwd:

assumes "asi rank root cost"

and "∀xs ∈ Y. ∀ys ∈ Y. xs = ys ∨ set xs ∩ set ys = {}"

and "∀xs ∈ Y. forward xs" and "[] /∈ Y" and "finite Y"

and "U ∈ Y" and "V ∈ Y"

and "before U V" and "rank (rev V) ≤ rank (rev U)"

and "
∧
xs. [[xs ∈ Y; ∃y ∈ set xs. ¬ (∃x' ∈ set V. x' →+

T y)

∧ (∃x ∈ set U. x →+
T y); xs ̸= U]]

=⇒ rank (rev V) ≤ rank (rev xs)"

and "∃x. fwd_sub root Y x"

shows "∃zs. fwd_sub root Y zs ∧ sublist (U@V) zs

∧ (∀as. fwd_sub root Y as −→ cost (rev zs) ≤ cost (rev as))"

Its proof uses the sublist_before_if_before lemma combined with some of the assump-
tions to obtain an arbitrary sequence as@U@bs@V@cs which has minimal cost and
satisfies fwd_sub root Y. Then, we show that the rank of bs can not be smaller than that of
V. This allows us to swap bs and V without increasing the cost due to the ASI property.
Moreover, this swapping preserves all properties of fwd_sub root Y because it is still
forward since there is an arc from U to the head of V. All the other conditions are also
satisfied since they were true before and we can not have any overlapping sequences
due to the second assumption.

To prove that bs does not have a lower rank than V, we first prove that we can split bs
into subsequences such that all of them have a rank greater than or equal to that of V.
We start this by splitting as, bs, and cs into all elements of Y. We denote these split lists
by appending a ’ to their name (e.g. bs’). This splitting is possible since all elements are
sublists and pairwise disjoint.

Then we use a function make_list_P which generates the desired result by combining
the sublists of bs until the condition is satisfied. It utilizes the List.extract function to find
the first element that satisfies a predicate P and the lists before and after that element.
This result triple is wrapped in an option since it is possible that no element satisfies P
in which case it returns None instead. Then make_list_P uses an auxiliary function to
combine an extracted element with its predecessor until it no longer satisfies P or does
not have any predecessor. Once this terminates, make_list_P continues on the untouched
rest of the list until it no longer finds a list that satisfies P.

Figure 12 shows an example of executing this function on a list that consists of seven
lists initially. The lists [3], [5], and [1] satisfy that the sum of elements is less than 10 or
exactly 17. However, this predicate does not have any meaning and we can just treat it as
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some arbitrary P. The first element that is found is [3] with its list of predecessors [[10]]
and its successors [[2, 9], [5], [1], [11], [7, 4]]. Calling the auxiliary function combines [10]
and [3] to [10, 3] which does not satisfy P. Hence, make_list_P continues by finding the
next element in the still untouched list [[2, 9], [5], [1], [11], [7, 4]]. This results in the next
triple consisting of [[2, 9]], [5], and [[1], [11], [7, 4]]. Since [2, 9, 5] does not satisfy P, the
auxiliary function terminates after one iteration again. Therefore, make_list_P continues
and finds [], [1], and [[11], [7, 4]] as the last triple. While [1] does not have a predecessor
in this triple, we still have the results of the previous iterations stored in an accumulator.
Hence, it combines [2, 9, 5] and [1] to [2, 9, 5, 1]. However, since this still satisfies P, it
combines this list with its next predecessor which results in [10, 3, 2, 9, 5, 1]. Finally, no
list satisfies P and make_list_P terminates with the result [[10, 3, 2, 9, 5, 1], [11], [7, 4]].

[10] [3] [2,9] [5] [1] [11] [7,4]
[10,3] [2,9] [5] [1] [11] [7,4]
[10,3] [2,9,5] [1] [11] [7,4]
[10,3] [2,9,5,1] [11] [7,4]

[10,3,2,9,5,1] [11] [7,4]

Figure 12: Example of combining lists with predecessors until their sums are no longer
less than 10 or equal to 17. Lists that satisfy this property are highlighted in
blue.

The following are the concrete definitions of make_list_P and its auxiliary function:

fun combine_lists_P

:: "('a list ⇒ bool) ⇒ 'a list ⇒ 'a list list ⇒ 'a list list"

where

"combine_lists_P _ y [] = [y]"

| "combine_lists_P P y (x#xs) =

(if P (x@y) then combine_lists_P P (x@y) xs else (x@y)#xs)"

fun make_list_P

:: "('a list ⇒ bool) ⇒ 'a list list ⇒ 'a list list ⇒ 'a list list"

where

"make_list_P P acc xs = (case List.extract P xs of

None ⇒ rev acc @ xs

| Some (as,y,bs) ⇒
make_list_P P (combine_lists_P P y (rev as @ acc)) bs)"

By instantiating it with P = (λx. rank(rev x) < rank(rev V)) we get a list of sequences
such that their concatenation is still equal to bs and none has a rank lower than V. We
show that this is the case in the omitted lemma make_list_notP.

In its proof, we use that the y argument of the combine_lists_P function is not reachable
from U. For the initial argument, this follows directly from the assumption that a
sequences in Y can not have a rank lower than the rank of V if it can be before V and
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must be behind U. Moreover, its predecessor x must have an arc to y as we illustrate in
Figure 13. Otherwise, it would be possible to swap x and y while preserving fwd_sub.
However, since y is the first element that has a rank lower than the rank of V, x’s rank
must be larger or equal to that. By transitivity, this would mean that y has a lower rank
than x. Therefore, swapping these two subsequences would result in a sequence with
a lower cost which contradicts the optimality of (as@U@bs@V@cs). Hence, there must
be an arc from x to y. By the transitivity of reachability and the hd_reach_all_forward’
lemma, x and, therefore, the combined sequence x@y are not reachable from U either.

as U a x y b c V cs

Figure 13: Example where bs’ is [a,x,y,b,c]; y and b have lower ranks than V;
solid lines are known initially; dashed lines are infered by the above reasoning;
red, striked out lines mean that there is definitely no edge

By the same reasoning, there must always be a sequence between U and y because it
would otherwise be possible to swap them for a lower cost while preserving fwd_sub.
Since this would contradict the optimality of (as@U@bs@V@cs), the combine_lists_P
function’s last combination must result in a sequence with a rank greater than or equal
to V. Therefore, all invariants that we need for the accumulator acc are preserved and
the lemma follows by induction. We call this function with an empty accumulator and
the bs’ list as its last argument which results in a list with the desired properties.

Hence, we can conclude that bs must have a rank greater than or equal to the rank
of V since we can inductively swap V and the last element of the make_list_notP result
without increasing the cost by using the ASI property.

While we can use this approach to prove the no_gap_if_contr_seq_fwd lemma, it is not
quite sufficient to be used on our normalize function. This is because the lemma only
works for a single combination while the normalize function may act on multiple subtrees
at the same time. Therefore, we show another lemma that works on a set X of such
combined nodes:

lemma combine_union_sets_optimal_cost:

assumes "asi rank root cost"

and "∀xs ∈ Y. ∀ys ∈ Y. xs = ys ∨ set xs ∩ set ys = {}"

and "∀xs ∈ Y. forward xs" and "[] /∈ Y" and "finite Y"

and "∃x. fwd_sub root Y x"

and "∀ys ∈ X. ∃U ∈ Y. ∃V ∈ Y.

U@V = ys ∧ before U V ∧ rank (rev V) ≤ rank (rev U)

∧ (∀xs ∈ Y. (∃y ∈ set xs. ¬ (∃x' ∈ set V. x' →+
T y)

∧ (∃x ∈ set U. x →+
T y) ∧ xs ̸= U)

−→ rank (rev V) ≤ rank (rev xs))"
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and "∀xs ∈ X. ∀ys ∈ X. xs = ys ∨ set xs ∩ set ys = {}"

and "∀xs ∈ X. ∀ys ∈ X. xs = ys

∨ ¬ (∃x ∈ set xs. ∃y ∈ set ys. x →+
T y)"

and "finite X"

shows "∃zs. fwd_sub root (X ∪ {x. x ∈ Y ∧ set x ∩ ⋃
(set`X) = {}}) zs

∧ (∀as. fwd_sub root Y as −→ cost (rev zs) ≤ cost (rev as))"

The goal states that an optimal solution within the union of X and all elements of
Y that were not combined, has the same cost as an optimal solution within Y. The
assumptions are the same as for the no_gap_if_contr_seq_fwd lemma just applied to all
elements of X. The only addition is that none of the elements in X must be reachable
from another element of X to ensure the independence of the combinations. The proof
follows by induction on the set of combined nodes X combined with the previous
lemma.

7.2.3 Additional Invariants of IKKBZ-Sub

Since we want to use the combine_union_sets_optimal_cost lemma on our normalize func-
tion, we need to prove all the assumptions of this lemma. Therefore, we extend the
ranked_dtree locale by annotating it with the original precedence graph and a cost func-
tion. Furthermore, we add these additional invariants where the arcs refer to the newly
annotated graph.

• asi_rank: The fixed rank and cost functions should satisfy the ASI property

• dom_mdeg_gt1: Subtrees with a maximum degree greater than one should have an
arc from the root to its children’s heads.

• dom_sub_contr: Subtrees that contain contradictory sequences should also have an
arc from the root to its children’s heads.

• dom_contr: If a root and its child are contradictory sequences and this subtree is a
chain, all vertices in that subtree must be reachable from some other vertex along
the path from the root to this vertex.

• dom_wedge: This concerns subtrees with more than one child. If it has a child
whose subtree is a chain, all of its vertices must also be reachable by some node
along the path from the root to this vertex.

• arc_in_dlverts: Arcs should be closed within the dlverts of its subtree. This means
that if the root of a subtree has an outgoing arc, the head of this arc is contained in
its dlverts.

• verts_conform: All vertices should be a conforming sequence of the annotated
precedence graph.

• verts_distinct: All vertices should be distinct.
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While most of these assumptions are quite straightforward, the assumptions that start
with the prefix dom might be less clear. We need these to ensure that contradictory
sequences have an arc from the parent to its child. This ensures that a normalized pair
satisfies the before property which we require to use the combine_union_sets_optimal_cost
lemma. Technically, we only need the dom_contr condition to prove that this is the case.
However, the other properties are required to prove that this invariant is preserved. The
following is the definition of this locale in Isabelle/HOL:

locale ranked_dtree_with_orig =

ranked_dtree t rank cmp + directed_tree T root

for t :: "('a list, 'b) dtree"

and rank cost cmp and T :: "('a, 'b) pre_digraph" and root +

assumes asi_rank: "asi rank root cost"

and dom_mdeg_gt1:

"[[is_subtree (Node r xs) t; t1 ∈ fst ` fset xs;

max_deg (Node r xs) > 1]]

=⇒ ∃v ∈ set r. v →T hd (Dtree.root t1)"

and dom_sub_contr:

"[[is_subtree (Node r xs) t; t1 ∈ fst ` fset xs;

∃v t2 e2. is_subtree (Node v {|(t2,e2)|}) (Node r xs)

∧ rank (rev (Dtree.root t2)) < rank (rev v)]]

=⇒ ∃v ∈ set r. v →T hd (Dtree.root t1)"

and dom_contr:

"[[is_subtree (Node r {|(t1,e1)|}) t;

rank (rev (Dtree.root t1)) < rank (rev r);

max_deg (Node r {|(t1,e1)|}) = 1]]

=⇒ dom_children (Node r {|(t1,e1)|}) T"

and dom_wedge:

"[[is_subtree (Node r xs) t; fcard xs > 1]]

=⇒ dom_children (Node r (Abs_fset (children_deg1 xs))) T"

and arc_in_dlverts:

"[[is_subtree (Node r xs) t; x ∈ set r; x →T y]]

=⇒ y ∈ dlverts (Node r xs)"

and verts_conform: "v ∈ dverts t =⇒ seq_conform v"

and verts_distinct: "v ∈ dverts t =⇒ distinct v"

Auxiliary Definitions for Arc Invariants

The definitions of these arc invariants use some additional auxiliary definitions: The
first is dom_children which expresses that any vertex should be reachable from some
other element along the path to this vertex. It assumes that all children have a maximum
degree of one or less and uses the function path_lverts. This function accumulates all
vertices between the root of a dtree and a certain element x.
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function path_lverts :: "('a list,'b) dtree ⇒ 'a ⇒ 'a set" where

"path_lverts (Node r {|(t,e)|}) x =

(if x ∈ set r then {} else set r ∪ path_lverts t x)"

| "∀x. xs ̸= {|x|} =⇒ path_lverts (Node r xs) x =

(if x ∈ set r then {} else set r)"

definition dom_children

:: "('a list,'b) dtree ⇒ ('a,'b) pre_digraph ⇒ bool"

where

"dom_children t1 T = (∀t ∈ fst ` fset (sucs t1). ∀x ∈ dverts t.

∃r ∈ set (root t1) ∪ path_lverts t (hd x). r →T hd x)"

To prove that the arcs invariants are preserved during merge1, we need an equivalent
definition which expresses path_lverts based on lists. We show their equivalence by
using the dtree_to_list and dtree_from_list definitions.

definition path_lverts_list :: "('a list × 'b) list ⇒ 'a ⇒ 'a set"

where

"path_lverts_list xs x =

(
⋃
(t,e)∈ set (takeWhile (λ(t,e). x /∈ set t) xs). set t)"

The last new definition is called children_deg1 and is just an abbreviation for the set of
all children that have a maximum degree of at most one:

abbreviation children_deg1

:: "(('a,'b) dtree × 'b) fset ⇒ (('a,'b) dtree × 'b) set"

where

"children_deg1 xs ≡ {(t,e). (t,e) ∈ fset xs ∧ max_deg t ≤ 1}"

Preservation of Invariants

To prove that ikkbz_sub preserves all invariants, we start by showing that normalizing
preserves the arc invariants. Since normalize is just the repeated application of normalize1,
it is sufficient to show that normalize1 is still a valid ranked_dtree_with_orig. From that,
we can conclude that normalize satisfies all conditions as well. An important lemma for
these proofs states that normalize1 preserves the maximum degree or changes it from one
to zero in the case that its child is a leaf. However, this only holds if at least one of the
well-formedness conditions is satisfied. Otherwise, two previously different trees may
be equal after applying normalize1 which would decrease the cardinality of a successor
set.

lemma normalize1_mdeg_eq:

"wf_darcs t1

=⇒ max_deg (normalize1 t1) = max_deg t1

∨ (max_deg (normalize1 t1) = 0 ∧ max_deg t1 = 1)"
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From this lemma, we can conclude the preservation of the dom_mdeg_gt1 invariant
since the node’s original degree must have been larger than one as well. Therefore, the
element and its children are either unchanged or a parent was merged with its successor.
In the first case, the lemma follows directly from dom_mdeg_gt1. In the other case, it
must have had a single child with a maximum degree greater than one. Therefore, the
property holds as well since the combination only adds elements to the set and does not
change the head.

Furthermore, we prove that the second arc invariant dom_sub_contr is preserved as
well. In the proof, we use that a new contradiction can only occur if there have already
been contradictory sequences before the normalization. Hence, we can prove this in a
lemma similar to the first one.

For the next properties, we need an additional lemma which states that the result of
calling path_lverts with the head of some vertex can only increase. This follows from
the definitions combined with the disjointness of the vertices. From this lemma, we
conclude that dom_children is preserved if we normalize the single successor of a node.

lemma path_lverts_normalize1_sub:

"[[wf_dlverts t1; x ∈ dverts (normalize1 t1);

max_deg (normalize1 t1) ≤ 1]]

=⇒ path_lverts t1 (hd x) ⊆ path_lverts (normalize1 t1) (hd x)"

lemma dom_children_normalize1:

"[[dom_children (Node r0 {|(t1,e1)|}) T; wf_dlverts t1; max_deg t1 ≤ 1]]

=⇒ dom_children (Node r0 {|(normalize1 t1,e1)|}) T"

While the preservation of the dom_contr invariant follows from these lemmas com-
bined with the result that a contradiction must have been present before, the proof of
dom_wedge splits the node into singleton successors first. This allows us to generalize
the dom_children_normalize1 lemma to multiple children and then reassemble the result.

Furthermore, we can show that the arcs are still closed within the dlverts since normal-
ize1 does not remove any relations. Moreover, it follows from the seq_conform_if_before
lemma combined with the invariants, that all vertices in the new dtree still conform to
the precedence graph.

Finally, we can use these results to prove that normalize1 produces a valid ranked_dtree_
with_orig since we have already shown the preservation of the distinctness invariant in
Section 7.1.1. From this we conclude that normalize must preserve all of the invariants:

theorem ranked_dtree_orig_normalize:

"ranked_dtree_with_orig (normalize t) rank cost cmp T root"

Similarly, we want to prove that merging preserves all invariants as well. However,
since merge1 depends on the merge function, we will first show some properties of this
function. First, we prove that path_lverts applied to the child of a node is a subset of the
path_lverts after executing the merge function.
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lemma path_lverts_merge_sup:

assumes "list_dtree (Node r xs)"

and "t1 ∈ fst ` fset xs"

and "a ∈ dlverts t1"

shows "∃t2 e2. merge (Node r xs) = Node r {|(t2,e2)|}

∧ path_lverts t1 a ⊆ path_lverts t2 a"

To prove this lemma, we show that Sorting_Algorithms.merge produces a list where the
path_lverts_list is a superset of both of its inputs’ path_lverts_lists. From these lemmas,
we can then conclude that it holds for merge as well by requiring the well-formedness of
its input and applying an induction on the ffold function’s recursion argument.

From these results, we can derive that merge preserves the dom_children property if all
children have well-formed vertices:

lemma merge_dom_children:

"[[dom_children (Node r xs) T; ∀t1 ∈ fst ` fset xs. wf_dlverts t1]]

=⇒ dom_children (merge (Node r xs)) T"

Furthermore, we prove that a contradiction after a merge can occur only at the root if
the input is a normalized dtree. This lemma is required to prove that merge1 preserves
the dom_sub_contr and dom_contr invariants.

lemma merge_root_if_contr:

"[[
∧
r1 t2 e2. is_subtree (Node r1 {|(t2,e2)|}) t1

=⇒ rank (rev r1) ≤ rank (rev (Dtree.root t2));

is_subtree (Node v {|(t2,e2)|}) (merge t1);

rank (rev (Dtree.root t2)) < rank (rev v)]]

=⇒ Node v {|(t2,e2)|} = merge t1"

The proof of this lemma requires an additional comparator since normalize does not
guarantee that nodes with equal rank are properly sorted according to cmp’. Hence,
we define cmp” to compare only the ranks without using the cmp comparator as a
tie-breaker.

lift_definition cmp'' :: "('a list×'b) comparator" is

"(λx y. if rank (rev (fst x)) < rank (rev (fst y)) then Less

else if rank (rev (fst x)) > rank (rev (fst y)) then Greater

else Equiv)"

It is quite simple to prove that a normalized dtree that was converted into a list is
sorted according to this comparator. Moreover, it follows from the definitions that
merging two sorted lists according to the cmp’ comparator produces a sorted list as well.
Hence, we conclude that all strict subtrees of a merged dtree are sorted according to
cmp’. Therefore, there is no contradiction in the strict subtrees which leads us to the
merge_root_if_contr lemma.

Now that we have these lemmas, we can prove that merge1 preserves all invariants.
The proof of the dom_mdeg_gt1 arc property is quite simple since it only concerns parts
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of the dtree that were not changed by previous merges. Similarly, the nodes relevant to
the dom_sub_contr invariant are mostly unchanged as well. The only possible change is
that a new contradiction was introduced by converting a node with a degree greater
than one, as we know from the merge_root_if_contr lemma. Therefore, it follows from
dom_mdeg_gt1 that this invariant is preserved as well.

Moreover, the dom_contr property also holds since we know from the merge_root_if_
contr lemma that any contradiction must have been a wedge before the call of merge1.
Hence, we can use the dom_wedge invariant combined with the merge_dom_children
lemma to prove that it still holds.

Even though the proof of the dom_wedge invariant is a bit more complicated, it can
essentially be reduced to showing that all children whose degree was reduced to one
satisfy the dom_children property. Since a change implies that there must have been
a wedge in that subtree, we can use the dom_mdeg_gt1 and dom_wedge assumptions
to show that all vertices are reachable from some node along the path. Children that
already had a maximum degree of at most one are not affected by merge1. Hence, the
dom_children property is preserved and holds for these as well.

Furthermore, we prove the last arc invariant by using that Sorting_Algorithms.merge
does not change the order of elements within an input list. Therefore, the set of dlverts of
the original dtrees is contained in the merged subtrees which leads us to the conclusion
that the arc_in_dlverts property is preserved.

Moreover, we know that all other invariants are preserved since the dverts set is
not changed during merging. Therefore, we can show that merge1 produces a valid
ranked_dtree_with_orig assuming that the input is normalized.

theorem merge1_ranked_dtree_orig:

assumes "
∧
r1 t2 e2. is_subtree (Node r1 {|(t2,e2)|}) t

=⇒ rank (rev r1) ≤ rank (rev (Dtree.root t2))"

shows "ranked_dtree_with_orig (merge1 t) rank cost cmp T root"

By combining this result with the normalize_sorted_ranks lemma and the ranked_dtree_
orig_normalize theorem, we can show that combination of merge1 and normalize pre-
serves all invariants. Furthermore, since ikkbz_sub is the repeated application of this
combination, we conclude that it results in a valid ranked_dtree_with_orig as well.

theorem merge1_normalize_ranked_dtree_orig:

"ranked_dtree_with_orig (merge1 (normalize t)) rank cost cmp T root"

theorem ikkbz_sub_ranked_dtree_orig:

"ranked_dtree_with_orig (ikkbz_sub t) rank cost cmp T root"

Invariants Hold Initially

Finally, we show that these invariants hold initially in the context of a precedence_graph.
Since the initial dtree is created by converting the precedence graph, it follows directly
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from the transformations that a child always has an arc from its parent. Therefore, we
can use this lemma to prove the first four arc invariants:

lemma subtree_to_list_dtree_dom:

assumes "is_subtree (Node r xs) to_list_dtree" and "t ∈ fst ` fset xs"

shows "hd r →T hd (Dtree.root t)"

Furthermore, we can conclude from the transformations that an arc from some node
implies that the head of that arc is a child of its tail. Moreover, the ASI property is
an assumption of the precedence_graph locale and the last two conditions hold trivially
for singleton lists. Hence, we can use these results to show that to_list_dtree is a valid
ranked_dtree_with_orig.

theorem to_list_dtree_ranked_orig:

"ranked_dtree_with_orig to_list_dtree rank cost cmp T root"

7.2.4 Optimality of IKKBZ-Sub and IKKBZ

At last, we show that these invariants are sufficient to apply the combine_union_sets_
optimal_cost lemma from Section 7.2.2 on the normalize1 function. First, we show that for
any vertex v that is reachable from a root r but not reachable from r’s child t1, the rank
of v can not be smaller than the rank of the root of t1.

lemma subtree_rank_ge_if_mdeg_le1:

"[[is_subtree (Node r {|(t1,e1)|}) t;

max_deg (Node r {|(t1,e1)|}) ≤ 1;

v ̸= r; v ∈ dverts t;

∃y ∈ set v. ¬ (∃x' ∈ set (Dtree.root t1). x' →+
T y)

∧ (∃x ∈ set r. x →+
T y)]]

=⇒ rank (rev (Dtree.root t1)) ≤ rank (rev v)"

To prove this property, we make a case distinction on the maximum degree of the
subtree we are interested in. If this subtree is a chain with a contradiction, we can use
the dom_sub_contr and dom_contr invariants to show that every child of t1 is reachable
from the root of t1. Otherwise, if t1 is a chain without a contradiction, all vertices in the
subtree are ordered according to their rank and, therefore, v can not have a lower rank.
On the other hand, if t1 has a maximum degree of greater than one, we can show that
any vertex in that subtree must be reachable from its root by using the dom_mdeg_gt1
and dom_wedge invariants. However, we know that all vertices reachable from r must be
in the subtree of one of its children because of the arc_in_dlverts property. Therefore, a v
other than Dtree.root t1 that satisfies both conditions does not exist.

Furthermore, we can show that any new vertex created by the normalize1 function has
to be the combination of two contradictory sequences. This follows from the definition
of normalize1 combined with the dom_sub_contr invariant. Afterward, we combine these
results to prove that all new vertices satisfy the first requirement of the X set.
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lemma normalize1_dverts_app_bfr_cntr_rnks:

assumes "v ∈ dverts (normalize1 t)" and "v /∈ dverts t"

shows "∃U ∈ dverts t. ∃V ∈ dverts t.

U @ V = v ∧ before U V ∧ rank (rev V) < rank (rev U)

∧ (∀xs ∈ dverts t. (∃y ∈ set xs. ¬ (∃x' ∈ set V. x' →+
T y)

∧ (∃x ∈ set U. x →+
T y) ∧ xs ̸= U)

−→ rank (rev V) ≤ rank (rev xs))"

Moreover, we prove that there is no arc between any pair of new vertices. In this
proof, we use the arc_in_dlverts invariant combined with the fact that we only normalize
multiple nodes at once if they are in different subtrees.

The only assumption that we keep for now is the existence of a sequence that satisfies
all constraints of our optimality domain. All the other remaining assumptions follow
directly from the invariants and basic properties of dtrees. Therefore, we can use these
results to prove that there exists an optimal solution within the union of the new vertices
created by normalize1 and the old vertices that do not intersect with the new ones:

lemma normalize1_dverts_split_optimal:

defines "X ≡ {v ∈ dverts (normalize1 t). v /∈ dverts t}"

assumes "∃x. fwd_sub root (dverts t) x"

shows "∃zs.
fwd_sub root (X ∪ {x. x ∈ dverts t ∧ set x ∩ ⋃

(set ` X) = {}}) zs

∧ (∀as. fwd_sub root (dverts t) as

−→ cost (rev zs) ≤ cost (rev as))"

Since these two sets represent a partitioning of the dverts of the normalize1 result,
we can conclude that normalize1 and, therefore, normalize preserve the existence of an
optimal solution:

lemma normalize1_dverts_split2:

fixes t1

defines "X ≡ {v ∈ dverts (normalize1 t1). v /∈ dverts t1}"

assumes "wf_dlverts t1"

shows "X ∪ {x. x ∈ dverts t1 ∧ set x ∩ ⋃
(set ` X) = {}}

= dverts (normalize1 t1)"

lemma normalize_dverts_optimal:

assumes "∃x. fwd_sub root (dverts t) x"

shows "∃zs. fwd_sub root (dverts (normalize t)) zs

∧ (∀as. fwd_sub root (dverts t) as

−→ cost (rev zs) ≤ cost (rev as))"

Finally, we prove that ikkbz_sub preserves the existence of an optimal solution as well.
The proof simply combines the previous lemma with the result that merge1 does not
change the set of dverts.
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theorem ikkbz_sub_dverts_optimal:

assumes "∃x. fwd_sub root (dverts t) x"

shows "∃zs. fwd_sub root (dverts (ikkbz_sub t)) zs

∧ (∀as. fwd_sub root (dverts t) as

−→ cost (rev zs) ≤ cost (rev as))"

To discharge the assumptions, we show the existence of a sequence that satisfies all
properties of fwd_sub root (dverts t). Since we want to show that the IKKBZ-Sub result
fulfills all of these properties anyway, we use it for this existence proof. In the previous
sections, we have already shown that ikkbz_sub results in a distinct list with a set equal
to dlverts t. Moreover, we know that neither ikkbz_sub nor denormalize change the first
element. Therefore, we only need to show that the result contains all dverts as a sublist
and satisfies the forward property.

The proof of the first property uses that all initial vertices are a sublist of some vertex
after applying normalize1. From this, we can conclude that the same holds for ikkbz_sub
by using the transitivity of sublist combined with the fact that merge1 does not change
the dverts.

lemma ikkbz_sub_verts_sublist:

"v ∈ dverts t =⇒ ∃v2 ∈ dverts (ikkbz_sub t). sublist v v2"

For proofs concerning the denormalize function, we introduce an additional transfor-
mation function that does not change the result of the denormalize function. It reduces
a chain to a single node by combining the root with its successor until it reaches the
end. Since it acts similar to normalize except that it does not have a condition, we call it
normalize_full. To prove its termination, we need an additional lemma which states that
the size of a singleton child replaced by its own successor set has a smaller size.

lemma dtree_size_skip_decr:

"size (Node r (sucs t1)) < size (Node v {|(t1,e1)|})"

function normalize_full :: "('a list,'b) dtree ⇒ ('a list,'b) dtree"

where

"normalize_full (Node r {|(t1,e1)|}) =

normalize_full (Node (r @ Dtree.root t1) (sucs t1))"

| "∀x. xs ̸= {|x|} =⇒ normalize_full (Node r xs) = Node r xs"

As mentioned before, an important property of this function is that it does not affect
the denormalize result. Moreover, the same is true for the normalize1 and normalize
functions if the input satisfies at least one of the well-formedness conditions.

With this function, we can prove that the denormalize result contains all vertices by
showing the same sublist preservation as before and combining this with the fact that
only a single vertex remains if the input of normalize_full was a chain.

lemma denormalize_full_sublist_preserv:

assumes "sublist xs v" and "v ∈ dverts t1" and "max_deg t1 ≤ 1"

shows "sublist xs (denormalize (normalize_full t1))"

57



7 IKKBZ

corollary denormalize_sublist_preserv:

"[[sublist xs v; v ∈ dverts (t1::('a list,'b) dtree); max_deg t1 ≤ 1]]

=⇒ sublist xs (denormalize t1)"

Similarly, we show that the denormalize result satisfies the forward property if the input
chain fulfills dom_children and all vertices are well-formed and forward lists: We first
show that normalize_full results in a dtree where all vertices are forward. Then we use
that a chain reduces to a single node to conclude that the denormalize result is forward.

lemma denormalize_forward:

"[[max_deg t1 ≤ 1; dom_children t1 T;

∀v ∈ dverts t1. forward v; wf_dlverts t1]]

=⇒ forward (denormalize t1)"

Since we know that ikkbz_sub only changes a dtree if the maximum degree of the input
is greater than one, we know that merge1 must have done the last change. Moreover,
since merge1 only alters the input if there is a wedge, we can use the dom_mdeg_gt1 and
dom_wedge invariants to show that the result of merge1 satisfies the dom_children property
if it is a chain. Therefore, we conclude that ikkbz_sub produces a dtree that satisifies
dom_children unless its input already is a chain.

lemma dom_mdeg_le1_merge1:

"[[max_deg (merge1 t) ≤ 1; merge1 t ̸= t]] =⇒ dom_children (merge1 t) T"

lemma dom_mdeg_le1_ikkbz_sub:

"ikkbz_sub t ̸= t =⇒ dom_children (ikkbz_sub t) T"

Finally, we combine this result with the verts_conform invariant and the denormal-
ize_forward lemma to show that the IKKBZ-Sub result must be forward if we assume that
an input chain already satisfies the dom_children property:

theorem ikkbz_sub_forward:

"[[max_deg t ≤ 1 =⇒ dom_children t T]]

=⇒ forward (denormalize (ikkbz_sub t))"

At last, we can use these results to replace the existence assumption with the appro-
priate preconditions. Since these follow directly from already proved properties, the
resulting lemma is more useful. While it would be possible to include these conditions
as invariants, they hinder the use of induction since they require that the root does not
change. Hence, we exclude them from the locale and have them as separate assumptions:

lemma ikkbz_sub_dverts_optimal':

assumes "hd (Dtree.root t) = root"

and "max_deg t ≤ 1 =⇒ dom_children t T"

shows "∃zs. fwd_sub root (dverts (ikkbz_sub t)) zs

∧ (∀as. fwd_sub root (dverts t) as

−→ cost (rev zs) ≤ cost (rev as))"
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To prove that denormalize results in a sequence with minimal cost, we use a lemma
that states that combining two nodes U and V preserves the existence of an optimal
solution if U must be before V and no other element has a lower rank than V. The proof
of this lemma is quite similar to the proof of combine_union_sets_optimal_cost.

We use this lemma to prove that an optimal solution within the dverts of normalize_full
exists if its input is a sorted chain that satisfies the dom_children property and has the
root as its first element.

By applying the normalize function beforehand, we can get rid of the sortedness
assumption. Since neither of these functions changes the denormalize result and we only
have a single vertex left, we conclude that denormalize produces an optimal solution.

lemma denormalize_optimal_if_mdeg_le1:

assumes "max_deg t ≤ 1" and "hd (Dtree.root t) = root"

and "dom_children t T"

shows "∀as. fwd_sub root (dverts t) as

−→ cost (rev (denormalize t)) ≤ cost (rev as)"

Finally, we combine all the results to prove that the denormalized ikkbz_sub result is
an optimal solution, given the two remaining assumptions:

theorem denormalize_ikkbz_sub_optimal:

assumes "hd (Dtree.root t) = root"

and "max_deg t ≤ 1 =⇒ dom_children t T"

shows "(∀as. fwd_sub root (dverts t) as

−→ cost (rev (denormalize (ikkbz_sub t))) ≤ cost (rev as))"

As a conclusion of IKKBZ-Sub’s optimality, we carry the results over to the prece-
dence_graph context which allows us to get rid of the assumptions:

lemma forward_ikkbz_sub: "forward ikkbz_sub"

lemma ikkbz_sub_optimal:

"[[set xs = verts T; distinct xs; forward xs; hd xs = root]]

=⇒ cost (rev ikkbz_sub) ≤ cost (rev xs)"

We complete the optimality proof in the ikkbz_query_graph context. First, we show that
for sequences that start with the root r of their precedence graph, the forward property is
equivalent to requiring that the left-deep tree does not have a cross product. While one
direction follows from the definition, the other direction uses the no_cross_awalk lemma.
Combining this with the apath_in_dir_if_apath_G lemma leads to the result that a valid
sequence without a cross product must be forward.

lemma no_cross_ldeep_iff_forward:

"[[xs ̸= []; r ∈ verts G; hd xs = r; distinct xs]]

=⇒ no_cross_products (create_ldeep xs)

←→ directed_tree.forward (dir_tree_r r) xs"

Hence, we can replace forward with no_cross_products in our results for IKKBZ-Sub.
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lemma ikkbz_sub_no_cross:

"r ∈ verts G =⇒ no_cross_products (create_ldeep (ikkbz_sub r))"

lemma ikkbz_sub_optimal_cost_r:

"[[set xs = verts G; distinct xs;

no_cross_products (create_ldeep xs); hd xs = r; r ∈ verts G]]

=⇒ cost_r r (rev (ikkbz_sub r)) ≤ cost_r r (rev xs)"

Finally, we combine the basic properties of the Max function with the cost_correct
assumption to apply these results to ikkbz. Since any list that contains exactly the vertices
of G must have one of the vertices as its head, this results in the optimality conditions
we wanted to achieve:

lemma ikkbz_no_cross: "no_cross_products (create_ldeep ikkbz)"

theorem ikkbz_optimal_tree:

"[[valid_tree t; no_cross_products t; left_deep t]]

=⇒ cost (create_ldeep ikkbz) ≤ cost t"

7.3 Application of IKKBZ IKKBZ_Examples.thy, CostFunctions.thy, JoinTree.thy

To conclude this chapter, we show how to apply the algorithm on the Cout, Cnlj, and Chj
cost functions. We start with a general cost function and then show how to instantiate it
such that it leads to these concrete cost functions.

7.3.1 A General Cost Function

The general cost function expresses different cost functions by using functions hj. These
functions can be different for every relation Rj and map cardinalities to a cost value.
The join cost it calculates is given by this equation [8, p. 50]:

cost(Ri ⋊⋉ Rj) = |Ri| · hj(|Rj|)

Since every relation can have a different function, we express h by an additional
parameter of type ’a ⇒ real ⇒ real. Moreover, the cases where a tree is not left-deep
are left undefined since they are not considered by IKKBZ. Hence, we get the following
definition:

fun c_IKKBZ ::

"('a ⇒ real ⇒ real) ⇒ 'a card ⇒ 'a selectivity

⇒ 'a joinTree ⇒ real"

where

"c_IKKBZ _ _ _ (Relation _) = 0"

| "c_IKKBZ h cf f (Join l (Relation rel)) =

card cf f l * (h rel (cf rel)) + c_IKKBZ h cf f l"

| "c_IKKBZ _ _ _ (Join l r) = undefined"
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Since the ASI property is defined for cost functions that operate on sequences of
relations instead of join trees, we derive an equivalent definition based on lists. This
definition uses an additional parameter to decide which relation is first as that one
should have a cost of zero. Furthermore, it works on reversed lists since the first relation
is present in all joins while the last relation is only relevant during the last join. Moreover,
we simplify the h function by omitting the cardinality parameter. We can do this since
we always call the h function of a relation with its own cardinality [5, p. 495][7, p. 132].

fun c_list ::

"('a ⇒ real) ⇒ 'a card ⇒ ('a ⇒ real) ⇒ 'a ⇒ 'a list ⇒ real"

where

"c_list _ _ _ _ [] = 0"

| "c_list _ _ h r [x] = (if x=r then 0 else h x)"

| "c_list sf cf h r (x#xs) =

c_list sf cf h r xs + ldeep_T sf cf xs * c_list sf cf h r [x]"

It utilizes the definition ldeep_T which computes the cardinality of left-deep trees by
calculating the product of cardinalities and contributing selectivities sk of all relations
that occur in a sequence S [5, p. 495][7, p. 132]:

T(ϵ) = 1

T(S) = ∏
Rk∈S

(sk · |Rk|)

definition ldeep_T :: "('a ⇒ real) ⇒ 'a card ⇒ 'a list ⇒ real" where

"ldeep_T sf cf xs = foldl (λa b. a * cf b * sf b) 1 xs"

The contributing selectivity of a relation depends on the order of the relations in a
sequence. It is calculated by computing the product of the selectivities of all the relations
that appear before a relation. Hence, we can use the list_sel_aux’ function which does
exactly this calculation. However, since that requires an input list, we define ldeep_s
which maps all relations that appear in a sequence to their contributing selectivity. Since
the empty product is equal to one, we use this as a default value.

fun ldeep_s :: "'a selectivity ⇒ 'a list ⇒ 'a ⇒ real" where

"ldeep_s f [] = (λ_. 1)"

| "ldeep_s f (x#xs) =

(λa. if a=x then list_sel_aux' f xs a else ldeep_s f xs a

We can show that the c_IKKBZ and c_list functions are indeed equivalent. However,
we need the usual correctness assumptions to do so. These are that the relations are
distinct and the cardinalities have reasonable values. Of course, we also require that the
join tree is left-deep and that the h functions must agree for all the relations that appear
in the tree. Furthermore, the list argument must be the reverse traversal of the join tree
as we mentioned before.
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theorem c_IKKBZ_eq_c_list:

fixes t

defines "xs ≡ revorder t"

assumes "distinct_relations t"

and "reasonable_cards cf f t"

and "left_deep t"

and "∀x ∈ relations t. h1 x (cf x) = h2 x"

shows "c_IKKBZ h1 cf f t = c_list (ldeep_s f xs) cf h2 (first_node t) xs"

Furthermore, we want to prove that c_list satisfies the ASI property. We use the fact
that since we have the root as a parameter, we can split sequences at any point to gain
an equivalent definition which depends only on c_list and ldeep_T of its subsequences [5,
p. 495].

lemma c_list_app:

"c_list f cf h r (ys@xs)

= c_list f cf h r xs + ldeep_T f cf xs * c_list f cf h r ys"

We define the rank function for c_list dependent on the cardinality (ldeep_T) and the
cost function itself [5, p. 495]:

rank(S) =
T(S)− 1
c_list(S)

Now we can use the above lemma to rewrite the difference of the cost of two sequences
with swapped subsequences. That difference is equal to the difference of the rank
functions of the swapped subsequences multiplied by the cardinality of the unchanged
part before the change and the cost of the exchanged elements [5, p. 495]:

c_list(AUVB)− c_list(AVUB) = T(A) · c_list(U) · c_list(V) · [rank(U)− rank(V)]

From this equation we can conclude that c_list(AUVB) ≤ c_list(AVUB)←→ rank(U)

≤ rank(V) holds for positive T(A) · c_list(U) · c_list(V). Since all three of these factors
are non-negative for valid inputs, we require them to be positive in the proof of this
relationship between the cost and rank functions.

Since we know that ldeep_T is positive for reasonable inputs, we only need to require
that the h function is positive as well. With this requirement we can conclude that the
c_list function returns positive values for the relevant nonempty sequences.

Finally, by combining these results, we can show that the c_list function satisfies
the ASI property if the h function has this property and the other two basic validity
conditions are satisfied as well:

theorem c_list_asi:

fixes sf cf h r xs

defines "f ≡ ldeep_s sf xs"

defines "rank ≡ (λl. (ldeep_T f cf l - 1) / c_list f cf h r l)"

assumes "sel_reasonable sf" and "∀x. cf x > 0" and "∀x. h x > 0"

shows "asi rank r (c_list f cf h r)"
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7.3.2 Replacing List Based Input for Tree Queries

A problem with these definitions is that ldeep_s requires a list as input. More concretely,
the c_IKKBZ_eq_c_list theorem even requires that this list is the same as the last argument.
However, this is not a reasonable assumption, since we can not properly instantiate it
for use in IKKBZ. However, we know that in a sequence that conforms to a precedence
graph, every relation has a unique incoming arc. Hence, every relation can have at most
one predecessor with which it has a selectivity that is not one [8, p. 51f].

Therefore, we add two definitions in the context of a directed tree: The first one is
contr_sel which uses the THE operator to map all relations to the selectivity of their
parent if they have one. The second definition is tree_sel and decides if a selectivity
corresponds to the arcs. That means that non-neighboring nodes must have a selectivity
of one.

definition contr_sel :: "'a selectivity ⇒ 'a ⇒ real" where

"contr_sel sel y = (if ∃x. x →T y then sel (THE x. x →T y) y else 1)"

definition tree_sel :: "'a selectivity ⇒ bool" where

"tree_sel sel = (∀x y. ¬ (x →T y ∨ y →T x) −→ sel x y = 1)"

To prove that contr_sel is correct, we first prove that list_sel_aux’ is one if tree_sel
holds and the list parameter (xs) does not contain an arc to or from y. We require that
forward_arcs (y#xs) does not hold to express that there is no arc from xs to y. While this
may not be true by itself, we additionally require that there is some sequence ys for
which forward_arcs (y#ys@xs) holds. On the one hand, this ensures that xs by itself is
correct which means that the problem must be the missing arc to y. On the other hand,
this means that it is possible to insert some elements in between such that it becomes
correct. This implies that there can not be an arc from y to xs either. Therefore, it follows
by induction and the definition of tree_sel that list_sel_aux’ must indeed be one.

With this auxiliary lemma we can now prove that contr_sel is equal to list_sel_aux’ if
the concatenation of y and xs is distinct and satisfies forward_arcs.

lemma contr_sel_eq_list_sel_aux'_if_tree_sel:

"[[tree_sel sel; distinct (y#xs); forward_arcs (y#xs); xs ̸= []]]

=⇒ contr_sel sel y = list_sel_aux' sel xs y"

Finally, we can conclude that contr_sel is equal to ldeep_s called with a forward list that
contains all vertices exactly once:

corollary contr_sel_eq_ldeep_s_if_tree_dst_fwd_verts':

"[[tree_sel sel; distinct xs; forward xs; set xs = verts T]]

=⇒ contr_sel sel = ldeep_s sel (rev xs)"

To transfer these results to the context of a tree_query_graph, we abbreviate the call
of contr_sel such that we only need the root node as a parameter. As the selectivity
argument, we use match_sel since that is the selectivity that corresponds to our query
graph. Therefore, it is the selectivity that we want to reason about.
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7 IKKBZ

abbreviation sel_r :: "'a ⇒ 'a ⇒ real" where

"sel_r r ≡ directed_tree.contr_sel (dir_tree_r r) match_sel"

Since we know that the query graph is an undirected tree, we know that the only
edges that are not contained in a directed tree must be the reverse arcs. Therefore,
match_sel must always satisfy the tree_sel property. Thus, we can use contr_sel instead of
ldeep_s for all directed trees of such a query graph.

lemma dir_tree_sel:

"r ∈ verts G =⇒ directed_tree.tree_sel (dir_tree_r r) match_sel"

7.3.3 Application of IKKBZ on Simple Cost Functions

To apply IKKBZ, we need three additional definitions. The first one wraps the cardinality
function cf into a wrapper that maps everything that is not a vertex of our query graph
to one. This is necessary since c_list_asi requires that all cardinalities are positive while
the cardinality of a query graph is only required to be positive for vertices. However,
since we are only interested in join trees that contain the vertices of our query graph, cf’
produces the same cardinalities and costs as cf.

definition cf' :: "'a ⇒ real" where

"cf' x = (if x ∈ verts G then cf x else 1)"

Furthermore, we use the definitions c_list_r and rank_r to abbreviate the calls of
c_list and the corresponding rank function. Apart from the list, we only need an h
function and a root node r as parameters since everything else is instantiated with fixed
arguments.

definition c_list_r :: "('a ⇒ real) ⇒ 'a ⇒ 'a list ⇒ real" where

"c_list_r h r = c_list (sel_r r) cf' h r"

definition rank_r :: "('a ⇒ real) ⇒ 'a ⇒ 'a list ⇒ real" where

"rank_r h r xs = (ldeep_T (sel_r r) cf' xs - 1) / c_list_r h r xs"

With these definitions, our requirements for the ASI property reduce to requiring that
the r parameter is a vertex of G and that the h function is positive. The proof of this
theorem follows from c_list_asi by replacing ldeep_s and unfolding the definitions.

theorem c_list_asi:

"[[r ∈ verts G; ∀x. h x > 0]] =⇒ asi (rank_r h r) r (c_list_r h r)"

Moreover, we can show that valid, left-deep join trees without cross products satisfy
the correctness requirement of the ikkbz_query_graph locale. This follows from the
c_IKKBZ_eq_c_list lemma combined with the new definitions and their equivalences.

lemma c_IKKBZ_list_correct_if_simple_h:

assumes "valid_tree t" and "no_cross_products t" and "left_deep t"

shows "c_list_r (λx. h x (cf' x)) (first_node t) (revorder t)

= c_IKKBZ h cf match_sel t"
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Therefore, we can instantiate the cost_r, rank_r and cost parameters with these def-
initions if h is positive for all positive input cardinalities. However, we still need a
comparator whose existence we assume by moving to the cmp_tree_query_graph context.
Inside it, we define an anonymous context for simple cost functions with a valid h
function. We refer to cost functions as simple if the h function does not change when
the root node changes.

context

fixes h :: "'a ⇒ real ⇒ real"

assumes h_pos: "∀x. h x (cf' x) > 0"

Inside this context, it follows from the assumptions and previous theorems that
the instantiations satisfy all requirements of an ikkbz_query_graph. We also add an
abbreviation that allows us to call IKKBZ from outside this context. It may seem like it is
longer, but we can only call ikkbz directly since we used an interpretation in this context.

theorem ikkbz_query_graph_if_simple_h:

defines "cost ≡ c_IKKBZ h cf match_sel"

defines "h' ≡ (λx. h x (cf' x))"

shows

"ikkbz_query_graph to_psp sel cf G cmp cost (c_list_r h') (rank_r h')"

abbreviation ikkbz_simple_h :: "'a list" where

"ikkbz_simple_h ≡ ikkbz"

Finally, we can apply these results to the Cnlj and Chj cost functions. The h function
that expresses nested loop joins maps every relation to the identity function. For hash
joins we have an even simpler h function which ignores all input and returns 1.2 [8, p.
50].

theorem c_nlj_IKKBZ:

"left_deep t =⇒ c_nlj cf f t = c_IKKBZ (λ_. id) cf f t"

theorem c_hj_IKKBZ:

"left_deep t =⇒ c_hj cf f t = c_IKKBZ (λ_ _. 1.2) cf f t"

Since both of these h functions are obviously positive, we can apply IKKBZ and use
all of its properties like the optimality of its result:

corollary ikkbz_optimal_nlj:

"[[valid_tree t; no_cross_products t; left_deep t]]

=⇒ c_nlj cf match_sel (create_ldeep (ikkbz_simple_h (λ_. id)))

≤ c_nlj cf match_sel t"

corollary ikkbz_optimal_hj:

"[[valid_tree t; no_cross_products t; left_deep t]]

=⇒ c_hj cf match_sel (create_ldeep (ikkbz_simple_h (λ_ _. 1.2)))

≤ c_hj cf match_sel t"
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7 IKKBZ

7.3.4 Application of IKKBZ on the Cout Cost Function

Expressing the Cout function is slightly more complex since it requires the cardinality
of the result of computing a join. Since the h function has one cardinality as its input
and its output is then multiplied with the other cardinality, we can use the selectivity to
calculate the resulting cardinality. Hence, we use ldeep_s inside h. This leads us to the
following general equivalence of c_IKKBZ and Cout:

theorem c_out_IKKBZ:

"[[distinct_relations t; reasonable_cards cf f t; left_deep t]]

=⇒ c_IKKBZ (λa b. ldeep_s f (revorder t) a * b) cf f t

= c_out cf f t"

While this h definition again has the problem that it requires the revorder of the input
join tree, we already know that we can replace it with contr_sel. Hence, we add these
definitions of the cost and rank functions to the context of a tree_query_graph.

definition c_out_list_r :: "'a ⇒ 'a list ⇒ real" where

"c_out_list_r r = c_list_r (λa. sel_r r a * cf' a) r"

definition c_out_rank_r :: "'a ⇒ 'a list ⇒ real" where

"c_out_rank_r r = rank_r (λa. sel_r r a * cf' a) r"

Since we defined sel_r such that it is always positive, we know that these two def-
initions must satisfy the ASI property. Furthermore, we can use our equivalences to
show that c_out_list_r is equal to Cout as well. This leads us directly to the proof of the
correctness requirement of the ikkbz_query_graph locale:

lemma c_out_list_correct:

"[[valid_tree t; no_cross_products t; left_deep t]]

=⇒ c_out_list_r (first_node t) (revorder t) = c_out cf match_sel t"

Hence, we know that all the requirements are met and we can interpret the instantia-
tion with the corresponding arguments as an ikkbz_query_graph. Therefore, we can apply
the IKKBZ algorithm to the Cout function as well and use all of its results. For example,
we can conclude the optimality of the solution:

interpretation QGout:

ikkbz_query_graph to_psp sel cf G cmp

"c_out cf match_sel" c_out_list_r c_out_rank_r

corollary ikkbz_optimal_cout:

"[[valid_tree t; no_cross_products t; left_deep t]]

=⇒ c_out cf match_sel (create_ldeep QGout.ikkbz)

≤ c_out cf match_sel t"
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8 Conclusion

We have defined a type for selectivities and some related operations and properties in
Isabelle/HOL. Furthermore, we have added definitions of query graphs and join trees
in Chapter 4. Together with the example cost functions and their general properties
from Chapter 5, these build a basic framework for query optimization [8, 9, 10].

In the last two chapters, we extended directed trees and implemented the join ordering
algorithm IKKBZ. Moreover, we have shown that the implementation behaves correctly
and produces an optimal left-deep tree without cross products if the query graph is
tree-shaped. Finally, we have shown how to instantiate the parameters to apply IKKBZ
on the examples of the Cnlj, Chj, and Cout cost functions. The proof contains a general
parameterized cost function that should simplify the extension to other cost functions [5,
7, 8].

For future work, it might be interesting to implement other query optimization
algorithms in Isabelle/HOL. Since the current definitions are focused on their simplicity,
replacing them with more efficient implementations could be another possible extension.
As mentioned before, it would also be possible to analyze different cost functions.
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