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Before beginning to solve the exercises, open a new theory file named ex01.thy and
write the the following three lines at the top of this file.

theory ex01

imports Main

begin

Exercise 1.1 Calculating with natural numbers

Use the value command to turn Isabelle into a fancy calculator and evaluate the fol-
lowing natural number expressions:

“2 + (2 ::nat)” “ (2 ::nat) ∗ (5 + 3 )” “ (3 ::nat) ∗ 4 − 2 ∗ (7 + 1 )”

Can you explain the last result?

Exercise 1.2 Natural number laws

Formulate and prove the well-known laws of commutativity and associativity for addition
of natural numbers.

Exercise 1.3 Counting elements of a list

Define a function which counts the number of occurrences of a particular element in a
list.

fun count :: “ ′a list ⇒ ′a ⇒ nat”

Test your definition of count on some examples and prove that the results are indeed
correct.

Prove the following inequality (and additional lemmas, if necessary) about the relation
between count and length, the function returning the length of a list.

theorem “count xs x ≤ length xs”

1



Exercise 1.4 Adding elements to the end of a list

Recall the definition of lists from the lecture. Define a function snoc that appends an
element at the right end of a list. Do not use the existing append operator @ for lists.

fun snoc :: “ ′a list ⇒ ′a ⇒ ′a list”

Convince yourself on some test cases that your definition of snoc behaves as expected,
for example run:

value “snoc [] c”

Also prove that your test cases are indeed correct, for instance show:

lemma “snoc [] c = [c]”

Next define a function reverse that reverses the order of elements in a list. (Do not use
the existing function rev from the library.) Hint: Define the reverse of x # xs using the
snoc function.

fun reverse :: “ ′a list ⇒ ′a list”

Demonstrate that your definition is correct by running some test cases, and proving that
those test cases are correct. For example:

value “reverse [a, b, c]”
lemma “reverse [a, b, c] = [c, b, a]”

Prove the following theorem. Hint: You need to find an additional lemma relating reverse
and snoc to prove it.

theorem “reverse (reverse xs) = xs”

Homework 1.1 Maximum Value in List

Submission until Friday, May 5, 11:59am.

Submit your solution via https://vmnipkow3.in.tum.de. Submit a theory file that runs
in Isabelle-2016-1 without errors.

General hints:

• If you cannot prove a lemma, that you need for a subsequent proof, assume this
lemma by using sorry.

• Define the functions as simple as possible. In particular, do not try to make them
tail recursive by introducing extra accumulator parameters — this will complicate
the proofs!

• All proofs should be straightforward, and take only a few lines.

Define a function that returns the maximal element of a list of natural numbers. The
result for the empty list shall be 0.

fun lmax :: “nat list ⇒ nat”
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Define a function that checks whether an element is contained in a list

fun lcont :: “ ′a ⇒ ′a list ⇒ bool”

Show that the maximum is greater or equal to every element of the list.

lemma max greater : “lcont x xs =⇒ x≤lmax xs”

Hint: If you see an if then else term in your premises, try to pass the option split : if splits
to auto or simp, e.g. apply (auto split : if splits)

Prove that reversing the list does not affect its maximum. Note that we use the reverse
function from exercise 4 here.

lemma “lmax (reverse xs) = lmax xs”

Hint: Induction. You may need an auxiliary lemma about lmax and snoc.

3


