
Technische Universität München SS 2017
Institut für Informatik 5. 5. 2017

Prof. Tobias Nipkow, Ph.D.
Dr. Peter Lammich

Functional Data Structures
Exercise Sheet 2

Exercise 2.1 Folding over Trees

Define a datatype for binary trees that store data only at leafs.

datatype ′a ltree =

Define a function that returns the list of elements resulting from an in-order traversal of
the tree.

fun inorder :: “ ′a ltree ⇒ ′a list”

Have a look at Isabelle/HOL’s standard function fold.

thm fold .simps

In order to fold over the elements of a tree, we could use fold f (inorder t) s. However,
from an efficiency point of view, this has a problem. Which?

Define a more efficient function fold ltree, and show that it is correct

fun fold ltree :: “ (′a ⇒ ′s ⇒ ′s) ⇒ ′a ltree ⇒ ′s ⇒ ′s”
lemma “fold f (inorder t) s = fold ltree f t s”

Define a function mirror that reverses the order of the leafs, i.e., that satisfies the
following specification:

lemma “inorder (mirror t) = rev (inorder t)”

Exercise 2.2 Shuffle Product

To shuffle two lists, we repeat the following step until both lists are empty: Take the
first element from one of the lists, and append it to the result.

That is, a shuffle of two lists contains exactly the elements of both lists in the right
order.

Define a function shuffles that returns a list of all shuffles of two given lists

fun shuffles :: “ ′a list ⇒ ′a list ⇒ ′a list list”

1

Show that the length of any shuffle of two lists is the sum of the length of the original
lists.

lemma “l∈set (shuffles xs ys) =⇒ length l = length xs + length ys”

Note: The set function converts a list to the set of its elements.

Exercise 2.3 Fold function

The fold function is a very generic function, that can be used to express multiple other
interesting functions over lists.

Write a function to compute the sum of the elements of a list. Specify two versions, one
direct recursive specification, and one using fold. Show that both are equal.

fun list sum :: “nat list ⇒ nat”
definition list sum ′ :: “nat list ⇒ nat”
lemma “list sum l = list sum ′ l”

Homework 2.1 Distinct lists

Submission until Friday, May 12, 11:59am. Submit your solution via https://vmnipkow3.
in.tum.de. Submit a theory file that runs in Isabelle-2016-1 without errors.

Define a function contains, that checks whether an element is contained in a list. Define
the function directly, not using set.

fun contains :: “ ′a ⇒ ′a list ⇒ bool”

Define a predicate ldistinct to characterize distinct lists, i.e., lists whose elements are
pairwise disjoint. Hint: Use the function contains.

fun ldistinct :: “ ′a list ⇒ bool”

Show that a reversed list is distinct if and only if the original list is distinct. Hint: You
may require multiple auxiliary lemmas.

lemma “ldistinct (rev xs) ←→ ldistinct xs”

Homework 2.2 More on fold

Submission until Friday, May 12, 11:59am.

Isabelle’s fold function implements a left-fold. Additionally, Isabelle also provides a
right-fold foldr.

Use both functions to specify the length of a list.

thm fold .simps

2

https://vmnipkow3.in.tum.de
https://vmnipkow3.in.tum.de

thm foldr .simps

definition length fold :: “ ′a list ⇒ nat”

definition length foldr :: “ ′a list ⇒ nat”

lemma “length fold l = length l”
lemma “length foldr l = length l”

Homework 2.3 List Slices

Submission until Friday, May 12, 11:59am. Specify a function slice xs s l, that, for a
list xs=[x 0,...,xn] returns the slice starting at s with length l, i.e., [x s,...,x s+len−1].

If s or len is out of range, return a shorter (or the empty) list.

fun slice :: “ ′a list ⇒ nat ⇒ nat ⇒ ′a list”
where

Hint: Use pattern matching instead of if -expressions. For example, instead of writing f
x = (if x>0 then . . . else . . .) you should define two equations f 0 = . . . and f (Suc n)
=

Some test cases, which should all hold, i.e., yield True

value “slice [0 ,1 ,2 ,3 ,4 ,5 ,6 ::int] 2 3 = [2 ,3 ,4]” — In range
value “slice [0 ,1 ,2 ,3 ,4 ,5 ,6 ::int] 2 10 = [2 ,3 ,4 ,5 ,6]” — Length out of range
value “slice [0 ,1 ,2 ,3 ,4 ,5 ,6 ::int] 10 10 = []” — Start index out of range

Show that concatenation of two adjacent slices can be expressed as a single slice:

lemma “slice xs s l1 @ slice xs (s+l1) l2 = slice xs s (l1 +l2)”

Show that a slice of a distinct list is distinct.

lemma “ldistinct xs =⇒ ldistinct (slice xs s l)”

3

