
Technische Universität München SS 2017
Institut für Informatik 12. 5. 2017

Prof. Tobias Nipkow, Ph.D.
Dr. Peter Lammich

Functional Data Structures
Exercise Sheet 3

Exercise 3.1 Insert with Less Comparisons

• Define a function ins2 that inserts into a binary search tree, using only one com-
parison per node. Use the same idea as isin2.

• Show that your function is equal to ins on binary search trees. Hint: You may
need an auxiliary lemma of the form:

[[bst t ; ∀ x ∈ set tree t . y < x]] =⇒ ins2 x (Some y) t = . . .

fun ins2 :: “ ′a::linorder ⇒ ′a option ⇒ ′a tree ⇒ ′a tree”

lemma ins2 None: “bst t =⇒ ins2 x None t = ins x t”

Exercise 3.2 Height-Preserving In-Order Join

Write a function that joins two binary trees such that

• The in-order traversal of the new tree is the concatenation of the in-order traversals
of the original tree

• The new tree is at most one higher than the highest original tree

Hint: Once you got the function right, proofs are easy!

fun join :: “ ′a tree ⇒ ′a tree ⇒ ′a tree”
lemma “inorder(join t1 t2) = inorder t1 @ inorder t2”
lemma “height(join t1 t2) ≤ max (height t1) (height t2) + 1”

Exercise 3.3 Sorting with BSTs

• Define a function to create a binary search tree from a list. Hint: Use fold.

• Show that your function returns a binary search tree with the correct elements

• We define bst sort as the inorder traversal of the tree created from a list. Show
that it contains the right elements, is distinct, and sorted.

1

definition mk tree :: “ ′a::linorder list ⇒ ′a tree”
lemma bst mk tree: “bst (mk tree l)”
lemma set mk tree: “set tree (mk tree l) = set l”

definition “bst sort l = inorder (mk tree l)”

lemma bst sort set : “set (bst sort l) = set l”
lemma bst sort sorted : “sorted (bst sort l)”
lemma bst sort distinct : “distinct (bst sort l)”

Homework 3 BSTs with Duplicates

Submission until Friday, May 19, 11:59am.

• Have a look at bst eq in ∼∼/src/HOL/Library/Tree, which defines BSTs with
duplicate elements.

• Warmup: Show that isin and ins are also correct for bst eq.

lemma “bst eq t =⇒ isin t x = (x ∈ set tree t)”
lemma bst eq ins: “bst eq t =⇒ bst eq (ins x t)”

• Define a function ins eq to insert into a BST with duplicates.

fun ins eq :: “ ′a::linorder ⇒ ′a tree ⇒ ′a tree”

• Show that ins eq preserves the invariant bst eq

lemma bst eq ins eq : “bst eq t =⇒ bst eq (ins eq x t)”

• Define a function count tree to count how often a given element occurs in a tree

fun count tree :: “ ′a ⇒ ′a tree ⇒ nat”

• Show that the ins eq function inserts the desired element, and does not affect other
elements.

lemma “count tree x (ins eq x t) = Suc (count tree x t)”
lemma “x 6=y =⇒ count tree y (ins eq x t) = count tree y t”

The next exercise is a bonus exercise, yielding bonus points. Bonus points count as
achieved points, but not for the maximum achievable points, when computing the per-
centage of the achieved homework points.

• Bonus (5p): Use BSTs with duplicates to sort a list (cf. Exercise 3). Prove that
the resulted list is sorted, and contains exactly the same number of each element
as the original list. Hint: Use a count function for lists, and relate it with the
count tree-function for trees.

2

definition bst eq sort :: “ ′a::linorder list ⇒ ′a list”
theorem count bst eq sort : “count x (bst eq sort l) = count x l”
theorem sorted bst eq sort : “sorted (bst eq sort l)”

3

