Functional Data Structures

Exercise Sheet 9

Exercise 9.1 Union Function on Tries

Define a function to merge two tries and show its correctness

fun union :: "trie \Rightarrow trie \Rightarrow trie" **lemma** "isin (union a b) $x = isin \ a \ x \lor isin \ b \ x$ "

Exercise 9.2 Intermediate Abstraction Level for Patricia Tries

We introduce an abstraction level in between tries and Patricia tries: A node with only a single non-leaf successor is represented as an unary node.

Via unary nodes, this implementation already introduces a notion of common prefix, but does not yet summarize runs of multiple prefixes into a list.

datatype *itrie* = *LeafI* | *UnaryI bool itrie* | *BinaryI bool "itrie* * *itrie"*

fun abs_itrie :: "itrie ⇒ trie" — Abstraction to tries
where
"abs_itrie LeafI = Leaf"
| "abs_itrie (UnaryI True t) = Node False (Leaf, abs_itrie t)"
| "abs_itrie (UnaryI False t) = Node False (abs_itrie t, Leaf)"
| "abs_itrie (BinaryI v (l,r)) = Node v (abs_itrie l, abs_itrie r)"

Refine the union function to intermediate tries

fun unionI :: "itrie \Rightarrow itrie \Rightarrow itrie"

Next, we define an abstraction function from Patricia tries to intermediate tries. Note that we need to install a custom measure function to get the termination proof through!

fun $absI_ptrie :: "ptrie \Rightarrow itrie"$ where " $absI_ptrie \ LeafP = \ LeafI"$ | " $absI_ptrie \ (NodeP \ [] \ v \ (l,r)) = BinaryI \ v \ (absI_ptrie \ l, \ absI_ptrie \ r)"$ | " $absI_ptrie \ (NodeP \ (x \# xs) \ v \ (l,r)) = UnaryI \ x \ (absI_ptrie \ (NodeP \ xs \ v \ (l,r)))$ "

Warmup: Show that abstracting Patricia tries over intermediate tries to tries is the same as abstracting directly to tries. **lemma** "abs_itrie o absI_ptrie = abs_ptrie"

Refine the union function to Patricia tries.

Hint: First figure out how a Patricia trie that correspond to a leaf/unary/binary node looks like. Then translate unionI equation by equation! More precisely, try to find terms unaryP and binaryP such that

 $absI_ptrie (unaryP \ k \ t) = UnaryI \ k \ (absI_ptrie \ t)$

 $absI_ptrie (binaryP v (l, r)) = BinaryI v (absI_ptrie l, absI_ptrie r)$

You will encounter a small problem with *unaryP*. Which one?

fun unionP :: "ptrie \Rightarrow ptrie \Rightarrow ptrie" lemma "absI_ptrie (unionP $t_1 t_2$) = unionI (absI_ptrie t_1) (absI_ptrie t_2)"

Homework 9.1 Shrunk Trees

Submission until Friday, 30. 6. 2017, 11:59am.

Have a look at the *delete2* function for tries. It maintains a "shrunk" - property on tries. Identify this property, define a predicate for it, and show that it is indeed maintained by empty, insert, and delete2!

fun shrunk :: "trie \Rightarrow bool" lemma "shrunk Leaf" lemma "shrunk t \Longrightarrow shrunk (insert ks t)" lemma "shrunk t \Longrightarrow shrunk (delete2 ks t)"

Homework 9.2 Refining Delete

Submission until Friday, 30. 6. 2017, 11:59am. Refine the delete function to intermediate tries and further down to Patricia tries.

fun deleteI :: "bool list \Rightarrow itrie \Rightarrow itrie" **where lemma** "abs_itrie (deleteI ks t) = delete ks (abs_itrie t)" **fun** pdelete :: "bool list \Rightarrow ptrie \Rightarrow ptrie" **lemma** "absI_ptrie (pdelete ks t) = deleteI ks (absI_ptrie t)"