
Technische Universität München SS 2017
Institut für Informatik 23. 6. 2017

Prof. Tobias Nipkow, Ph.D.
Dr. Peter Lammich

Functional Data Structures
Exercise Sheet 9

Exercise 9.1 Union Function on Tries

Define a function to merge two tries and show its correctness

fun union :: “trie ⇒ trie ⇒ trie”
lemma “isin (union a b) x = isin a x ∨ isin b x”

Exercise 9.2 Intermediate Abstraction Level for Patricia Tries

We introduce an abstraction level in between tries and Patricia tries: A node with only
a single non-leaf successor is represented as an unary node.

Via unary nodes, this implementation already introduces a notion of common prefix, but
does not yet summarize runs of multiple prefixes into a list.

datatype itrie = LeafI | UnaryI bool itrie | BinaryI bool “itrie ∗ itrie”

fun abs itrie :: “itrie ⇒ trie” — Abstraction to tries
where
“abs itrie LeafI = Leaf”
| “abs itrie (UnaryI True t) = Node False (Leaf , abs itrie t)”
| “abs itrie (UnaryI False t) = Node False (abs itrie t , Leaf )”
| “abs itrie (BinaryI v (l ,r)) = Node v (abs itrie l , abs itrie r)”

Refine the union function to intermediate tries

fun unionI :: “itrie ⇒ itrie ⇒ itrie”

Next, we define an abstraction function from Patricia tries to intermediate tries. Note
that we need to install a custom measure function to get the termination proof through!

fun absI ptrie :: “ptrie ⇒ itrie” where
“absI ptrie LeafP = LeafI”
| “absI ptrie (NodeP [] v (l ,r)) = BinaryI v (absI ptrie l , absI ptrie r)”
| “absI ptrie (NodeP (x#xs) v (l ,r)) = UnaryI x (absI ptrie (NodeP xs v (l ,r)))”

Warmup: Show that abstracting Patricia tries over intermediate tries to tries is the same
as abstracting directly to tries.

1



lemma “abs itrie o absI ptrie = abs ptrie”

Refine the union function to Patricia tries.

Hint: First figure out how a Patricia trie that correspond to a leaf/unary/binary node
looks like. Then translate unionI equation by equation!

More precisely, try to find terms unaryP and binaryP such that

absI ptrie (unaryP k t) = UnaryI k (absI ptrie t)

absI ptrie (binaryP v (l , r)) = BinaryI v (absI ptrie l , absI ptrie r)

You will encounter a small problem with unaryP. Which one?

fun unionP :: “ptrie ⇒ ptrie ⇒ ptrie”
lemma “absI ptrie (unionP t1 t2) = unionI (absI ptrie t1) (absI ptrie t2)”

Homework 9.1 Shrunk Trees

Submission until Friday, 30. 6. 2017, 11:59am.

Have a look at the delete2 function for tries. It maintains a “shrunk” - property on tries.
Identify this property, define a predicate for it, and show that it is indeed maintained
by empty, insert, and delete2!

fun shrunk :: “trie ⇒ bool”
lemma “shrunk Leaf”
lemma “shrunk t =⇒ shrunk (insert ks t)”
lemma “shrunk t =⇒ shrunk (delete2 ks t)”

Homework 9.2 Refining Delete

Submission until Friday, 30. 6. 2017, 11:59am.

Refine the delete function to intermediate tries and further down to Patricia tries.

fun deleteI :: “bool list ⇒ itrie ⇒ itrie” where
lemma “abs itrie (deleteI ks t) = delete ks (abs itrie t)”
fun pdelete :: “bool list ⇒ ptrie ⇒ ptrie”
lemma “absI ptrie (pdelete ks t) = deleteI ks (absI ptrie t)”

2


